Treelike Comparability Graphs: Characterization, Recognition, and Applications

  • Sabine Cornelsen
  • Gabriele Di Stefano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3353)


An undirected graph is a treelike comparability graph if it admits a transitive orientation such that its transitive reduction is a tree. We show that treelike comparability graphs are distance hereditary. Utilizing this property, we give a linear time recognition algorithm. We then characterize permutation graphs that are treelike. Finally, we consider the Partitioning into Bounded Cliques problem on special subgraphs of treelike permutation graphs.


Linear Time Connected Graph Undirected Graph Interval Graph Comparability Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7, 23–25 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs with unit-times. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 291–300. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Corneil, D.G., Olariu, S., Stewart, L.: A linear time algorithm to compute a dominating path in an AT-free graph. Information Processing Letters 54(5), 253–257 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corneil, D.G., Olariu, S., Stewart, L.: Astroidal triple-free graphs. SIAM Journal on Discrete Mathematics 10(3), 399–430 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canadian Journal of Mathematics 32, 734–765 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cunningham, W.H., Edmonds, J.: Decomposition of directed graphs. SIAM Journal on Algebraic and Discrete Methods 3, 214–228 (1982)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E.: Efficient parallel and linear time sequential split decomposition. In: Thiagarajan, P.S. (ed.) FSTTCS 1994. LNCS, vol. 880, pp. 171–180. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Di Stefano, G., Koci, M.L.: A graph theoretical approach to the shunting problem. In: Gerards, B. (ed.) Proceedings of the Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS 2003). Electronic Notes in Theoretical Computer Science, vol. 92 (2004)Google Scholar
  9. 9.
    Golumbic, M.C.: Trivially perfect graphs. Discrete Mathematics 24, 105–107 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Applied Mathematics 9, 157–170 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hammer, P.L., Maffray, F.: Completely seperable graphs. Discrete Applied Mathematics 27, 85–99 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jansen, K.: The mutual exclusion scheduling problem for permutation and comparability graphs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 287–297. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Kirckpatrick, D.G., Hell, P.: On the completeness of a generalized matching problem. In: Proceedings of the 10th Annual ACM Symposium on the Theory of Computing (STOC 1978), pp. 240–245. ACM, The Association for Computing Machinery (1978)CrossRefGoogle Scholar
  14. 14.
    Lonc, Z.: On complexity of some chain and antichain partition problems. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 97–104. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Wolk, E.S.: A note on “The comparability graph of a tree”. Proceedings of the American Mathematical Society 16, 17–20 (1965)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sabine Cornelsen
    • 1
  • Gabriele Di Stefano
    • 2
  1. 1.Fachbereich Informatik & InformationswissenschaftUniversität Konstanz 
  2. 2.Dipartimento di Ingegneria ElettricaUniversità dell’Aquila 

Personalised recommendations