Advertisement

Crossing Reduction in Circular Layouts

  • Michael Baur
  • Ulrik Brandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3353)

Abstract

We propose a two-phase heuristic for crossing reduction in circular layouts. While the first algorithm uses a greedy policy to build a good initial layout, an adaptation of the sifting heuristic for crossing reduction in layered layouts is used for local optimization in the second phase. Both phases are conceptually simpler than previous heuristics, and our extensive experimental results indicate that they also yield fewer crossings. An interesting feature is their straightforward generalization to the weighted case.

Keywords

Average Degree Binary Decision Diagram Outerplanar Graph Open Edge Adjacency List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. Technical Report 2004-14, Universität Karlsruhe (TH), Fakultät für Informatik (August 2004)Google Scholar
  2. 2.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Computational Geometry: Theory and Applications 7, 303–326 (1997)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout Toolkit. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 92–100. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars Combinatoria 21(A), 89–98 (1986)MathSciNetGoogle Scholar
  5. 5.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    He, H., Sýkora, O.: New circular drawing algorithms. Unpublished manuscriptGoogle Scholar
  7. 7.
    Mäkinen, E.: On circular layouts. International Journal of Computer Mathematics 24, 29–37 (1988)CrossRefGoogle Scholar
  8. 8.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NPcompleteness of a computer network layout problem. In: Proc. IEEE Intl. Symp. Circuits and Systems, 292–295 (1987)Google Scholar
  9. 9.
    Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)Google Scholar
  11. 11.
    Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Information Processing Letters 9(5), 229–232 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Proc. IEEE Intl. Conf. Computer Aided Design (ICCAD 1993), pp. 42–47 (1993)Google Scholar
  13. 13.
    Shahrokhi, F., Sýkora, O., László, L., Székely, A., Vrto, I.: Book embeddings and crossing numbers. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 256–268. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Six, J.M., Tollis, I.G.: Circular drawings of biconnected graphs. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 57–73. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Baur
    • 1
  • Ulrik Brandes
    • 2
  1. 1.Department of Computer ScienceUniversity of Karlsruhe (TH)Germany
  2. 2.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations