Exact (Exponential) Algorithms for the Dominating Set Problem

  • Fedor V. Fomin
  • Dieter Kratsch
  • Gerhard J. Woeginger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3353)


We design fast exact algorithms for the problem of computing a minimum dominating set in undirected graphs. Since this problem is NP-hard, it comes with no big surprise that all our time complexities are exponential in the number n of vertices. The contribution of this paper are ‘nice’ exponential time complexities that are bounded by functions of the form c n with reasonably small constants c<2: For arbitrary graphs we get a time complexity of 1.93782 n . And for the special cases of split graphs, bipartite graphs, and graphs of maximum degree three, we reach time complexities of 1.41422 n , 1.73206 n , and 1.51433 n , respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dantsin, E., Goerdt, A., Hirsch, E.A., Kannan, R., Kleinberg, J., Papadimitriou, C., Raghavan, P., Schöning, U.: A deterministic (2−2/(k+1))n algorithm for k-SAT based on local search. Theoretical Computer Science 289, 69–83 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)Google Scholar
  4. 4.
    Eppstein, D.: Small maximal independent sets and faster exact graph coloring. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 462–470. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branchwidth and exponential speed-up. In: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 168–177 (2003)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  7. 7.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  8. 8.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)zbMATHGoogle Scholar
  9. 9.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)zbMATHGoogle Scholar
  10. 10.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63, 512–530 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 927–928 (1999)Google Scholar
  12. 12.
    Reed, B.: Paths, stars and the number three. Combinatorics, Probability and Computing 5, 277–295 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7, 425–440 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Dieter Kratsch
    • 2
  • Gerhard J. Woeginger
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.LITAUniversité de MetzMetz Cedex 01France
  3. 3.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations