Advertisement

Lexicographic Breadth First Search – A Survey

  • Derek G. Corneil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3353)

Abstract

Lexicographic Breadth First Search, introduced by Rose, Tarjan and Lueker for the recognition of chordal graphs is currently the most popular graph algorithmic search paradigm, with applications in recognition of restricted graph families, diameter approximation for restricted families and determining a dominating pair in an AT-free graph. This paper surveys this area and provides new directions for further research in the area of graph searching.

Keywords

Recognition Algorithm Interval Graph Chordal Graph Depth First Search Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandelt, H.-K., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory B 41, 182–208 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berry, A., Bordat, J.-P.: Separability generalizes Dirac’s theorem. Disc. Appl. Math. 84, 43–53 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brandstädt, A., Dragan, F.F.: On linear and circular structure of a (claw,net)- free graph. Disc. Appl. Math. 129, 285–303 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brandstädt, A., Dragan, F.F., Nicolai, F.: LexBFS-orderings and powers of chordal graphs. Disc. Math. 171, 27–42 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs on Disc. Math. and Applic., SIAM (1999)Google Scholar
  7. 7.
    Bretscher, A.: LexBFS based recognition algorithms for cographs and related families, Ph.D. thesis in preparation, Dept. of Computer Science, University of Toronto, oronto, CanadaGoogle Scholar
  8. 8.
    Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A simple linear time lexBFS cograph recognition algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 119–130. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chang, J.-M., Ho, C.-W., Ko, M.-T.: LexBFS-ordering in asteroidal triple-free graphs. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 163–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Choi, V., Farach-Colton, M.: Barnacle: an assembly algorithm for clone-based sequences of whole genomes. Gene 320, 165–176 (2003)CrossRefGoogle Scholar
  11. 11.
    Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Disc. Appl. Math. 138, 371–379 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Corneil, D.G., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on restricted graph families. Disc. Appl. Math. 113, 143–166 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Corneil, D.G., Dragan, F.F., Koehler, E.: On the power of BFS to determine a graph’s diameter. Networks 42, 209–222 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Corneil, D.G., Koehler, E.: unpublished manuscriptGoogle Scholar
  15. 15.
    Corneil, D.G., Koehler, E., Lanlignel, J.-M.: On LBFS end-vertices (in preparation)Google Scholar
  16. 16.
    Corneil, D.G., Krueger, R.: A unified view of graph searching (in preparation)Google Scholar
  17. 17.
    Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs, under revision; extended abstract appeared as The ultimate interval graph recognition algorithm? (extended abstract). In: Proc. SODA 1998. Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.175–180 (1998)Google Scholar
  18. 18.
    Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Dragan, F.F.: Almost diameter of a house-hole-free graph in linear time via LexBFS. Disc. Appl. Math. 95, 223–239 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Dragan, F.F.: Estimating all pairs shortest paths in restricted graph families: A unified approach. In: Brandstädt, A., Van Le, B. (eds.) WG 2001. LNCS, vol. 2204, pp. 103-116. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Dragan, F.F., Nicolai, F.: Lex-BFS-orderings of distance-hereditary graphs, Schriftenreihe des Fachbereichs Mathematik der Universität Duisburg, Duisburg, Germany, SM-DU-303 (1995)Google Scholar
  22. 22.
    Dragan, F.F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs. In: D’Amore, F., Marchetti-Spaccamela, A., Franciosa, P.G. (eds.) WG 1996. LNCS, vol. 1197, pp. 166–180. Springer, Heidelberg (1997)Google Scholar
  23. 23.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-bfs and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234, 59–84 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Disc. Math (2004) (To appear)Google Scholar
  26. 26.
    Jacobson, M.S., McMorris, F.R., Mulder, H.M.: Tolerance intersection graphs. In: Alavi, Y., et al. (eds.) 1988 International Kalamazoo Graph Theory Conference, pp. 705–724. Wiley, Chichester (1991)Google Scholar
  27. 27.
    Jamison, B., Olariu, S.: On the semi-perfect elimination. Advances in Appl. Math. 9, 364–376 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM J. Disc. Math. 6, 400–417 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18, 68–81 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Lanlignel, J.-M.: Private communications (1999)Google Scholar
  31. 31.
    Looges, P.J., Olariu, S.: Optimal greedy algorithms for indifference graphs. Computers Math. Applic. 25, 15–25 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ma, T.: unpublished manuscriptGoogle Scholar
  33. 33.
    McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proc. SODA 1994, Fifth Annual ACMSIAM Symposium on Discrete Algorithms, pp. 536–545 (1994)Google Scholar
  34. 34.
    Meister, D.: Recognizing and computing minimal triangulations efficiently, Technical Report 302, Fakulät für Mathematik und Informatik, Universität Würzburg (2002)Google Scholar
  35. 35.
    Nicolai, F.: A hypertree characterization of distance-hereditary graphs, manuscript, Gerhard-Mercator-Universität Duisburg (1996)Google Scholar
  36. 36.
    Olariu, S.: An optimal greedy heuristic to color interval graphs. Inform. Process. Lett. 37, 65–80 (1991)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Ramalingam, G., Pandu Rangan, C.: A uniform approach to domination problems on interval graphs. Inform. Process. Lett. 27, 271–274 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Numer. 59, 235–242 (1987)MathSciNetGoogle Scholar
  39. 39.
    Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)Google Scholar
  40. 40.
    Roberts, F.S.: On the compatibility between a graph and a simple order. J. Combin. Theory Ser. B 11, 28–38 (1971)zbMATHCrossRefGoogle Scholar
  41. 41.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Simon, K.: A new simple linear algorithm to recognize interval graphs. LNCS 553, 289–308 (1992)Google Scholar
  45. 45.
    Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien in Rn, Ph.D. thesis, Universität Göttigen, Germany (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Derek G. Corneil
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations