An Ordered Logic Program Solver

  • Davy Van Nieuwenborgh
  • Stijn Heymans
  • Dirk Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3350)

Abstract

We describe the design of the olps system, an implementation of the preferred answer set semantics for ordered logic programs. The basic algorithm we propose computes the extended answer sets of a simple program using an intuitive 9-valued lattice, called T9. During the computation, this lattice is employed to keep track of the status of the literals and the rules while evolving to a solution. It turns out that the basic algorithm needs little modification in order to be able to compute the preferred answer sets of an ordered logic program. We illustrate the system using an example from diagnostic reasoning and we present some preliminary benchmark results comparing olps with existing answer set solvers such as smodels and dlv.

Keywords

Preference Answer Set Programming Implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arenas, M., Bertossi, L., Chomicki, J.: Specifying and querying database repairs using logic programs with exceptions. In: Procs. of the 4th International Conference on Flexible Query Answering Systems, pp. 27–41. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)MATHCrossRefGoogle Scholar
  3. 3.
    Belnap, N.D.: A useful four-valued logic. In: Modern uses of multi-valued logic, pp. 8–37. D. Reidel Publ. Co. (1975)Google Scholar
  4. 4.
    Brewka, G.: Logic programming with ordered disjunction. In: Proc. of the National Conference on Artificial Intelligence, pp. 100–105. AAAI Press, Menlo Park (2002)Google Scholar
  5. 5.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)MathSciNetGoogle Scholar
  6. 6.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under incomplete knowledge. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 807–821. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: The DLVk planning system. In: Logic in Artificial Intelligence. LNCS (LNAI), vol. 2424, pp. 541–544. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: Considerations on updates of logic programs. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 2–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Faber, W., Leone, N., Pfeifer, G.: Pushing goal derivation in DLP computations. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 177–191. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Faber, W., Leone, N., Pfeifer, G.: Experimenting with heuristics for answer set programming. In: Proc. of the International Joint Conference on Artificial Intelligence, pp. 635–640. Morgan Kaufmann, San Francisco (2001)Google Scholar
  11. 11.
    Fitting, M.: A Kripke-Kleene semantics for logic programs. Journal of logic programming 4, 295–312 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Flach, P.: Simply Logical - Intelligent Reasoning by Example. Wiley, Chichester (1994)MATHGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Procs. of the Intl. Conf. on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  14. 14.
    Lifschitz, V.: Answer set programming and plan generation. Journal of Artificial Intelligence 138(1-2), 39–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 432–443. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Van Nieuwenborgh, D., Vermeir, D.: Order and negation as failure. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 194–208. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Van Nieuwenborgh, D., Vermeir, D.: Ordered diagnosis. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 244–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. In: Theory and Practice of Logic Programming, TPLP (2004) (accepted for publication)Google Scholar
  19. 19.
    Przymusinski, T.: Well-founded semantics coincides with three-valued stable semantics. Fundamenta Informaticae 13, 445–463 (1990)MATHMathSciNetGoogle Scholar
  20. 20.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Syrjänen, T., Niemelä, I.: The smodels system. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, p. 434. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the Association for Computing Machinery 23(4), 733–742 (1976)MATHMathSciNetGoogle Scholar
  23. 23.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the Association for Computing Machinery 38(3), 620–650 (1991)MATHMathSciNetGoogle Scholar
  24. 24.
    Van Nieuwenborgh, D., Vermeir, D.: Ordered programs as abductive systems. In: Proceedings of the APPIA-GULP-PRODE Conference on Declarative Programming (AGP 2003), pp. 374–385. Regio di Calabria, Italy (2003)Google Scholar
  25. 25.
    De Vos, M., Vermeir, D.: Choice Logic Programs and Nash Equilibria in Strategic Games. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 266–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Davy Van Nieuwenborgh
    • 1
  • Stijn Heymans
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel,VUBBrusselsBelgium

Personalised recommendations