Results on Algebraic Immunity for Cryptographically Significant Boolean Functions

  • Deepak Kumar Dalai
  • Kishan Chand Gupta
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3348)


Recently algebraic attack has received a lot of attention in cryptographic literature. It has been observed that a Boolean function f, interpreted as a multivariate polynomial over GF(2), should not have low degree multiples when used as a cryptographic primitive. In this paper we show that high nonlinearity is a necessary condition to resist algebraic attack and explain how the Walsh spectra values are related to the algebraic immunity (resistance against algebraic attack) of a Boolean function. Next we present enumeration results on linearly independent annihilators. We also study certain classes of highly nonlinear resilient Boolean functions for their algebraic immunity.


Algebraic Attacks Annihilators Boolean Functions Nonlinearity Walsh Spectra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 573–588. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Carlet, C.: A larger class of cryptographic Boolean functions via a study of the Maiorana-McFarland construction. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 549–564. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Carlet, C.: Recent results on binary bent functions. In: Proceedings of the International Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences 25(1-4), 133–149 (2000)Google Scholar
  4. 4.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Ding, C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)MATHGoogle Scholar
  8. 8.
    Filiol, E., Fontaine, C.: Highly nonlinear balanced Boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Gupta, K.C., Sarkar, P.: Efficient software implementation of resilient Maiorana-McFarland S-Boxes. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 317–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Hell, M., Maximov, A., Maitra, S.: On efficient implementation of search strategy for rotation symmetric Boolean functions. In: Ninth International Workshop on Algebraic and Combinatoral Coding Theory, ACCT 2004, Black Sea Coast, Bulgaria, June 19–25 (2004)Google Scholar
  11. 11.
    Johansson, T., Jonsson, F.: Fast correlation attacks through reconstruction of linear polynomials. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Maximov, A., Hell, M., Maitra, S.: Plateaued Rotation Symmetric Boolean Functions on Odd Number of Variables. IACR eprint server,, no. 2004/144, June 25 (2004)Google Scholar
  13. 13.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient and correlation immune Boolean functions achieving upper bounds on nonlinearity. In: Workshop on Coding and Cryptography - WCC 2001, Paris, January 8–12. Electronic Notes in Discrete Mathematics, vol. 6. Elsevier Science, Amsterdam (2001)Google Scholar
  15. 15.
    Pasalic, E.: Degree optimized resilient Boolean functions from Maiorana-McFarland class. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 93–114. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Sarkar, P., Maitra, S.: Construction of nonlinear Boolean functions with important cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 485–506. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Sarkar, P., Maitra, S.: Nonlinearity bounds and construction of resilient Boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Seberry, J., Zhang, X.M., Zheng, Y.: On constructions and nonlinearity of correlation immune Boolean functions. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 181–199. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory IT-30(5), 776–780 (1984)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Stănică, P., Maitra, S.: Rotation Symmetric Boolean Functions – Count and Cryptographic Properties. In: R. C. Bose Centenary Symposium on Discrete Mathematics and Applications, December 2002. Electronic Notes in Discrete Mathematics, vol. 15. Elsevier, Amsterdam (2002)Google Scholar
  21. 21.
    Stănică, P., Maitra, S., Clark, J.: Results on Rotation Symmetric Bent and Correlation Immune Boolean Functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Tarannikov, Y.V.: On resilient Boolean functions with maximum possible nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000)Google Scholar
  23. 23.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Deepak Kumar Dalai
    • 1
  • Kishan Chand Gupta
    • 1
  • Subhamoy Maitra
    • 1
  1. 1.Applied Statistics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations