Advertisement

Separable Linkable Threshold Ring Signatures

  • Patrick P. Tsang
  • Victor K. Wei
  • Tony K. Chan
  • Man Ho Au
  • Joseph K. Liu
  • Duncan S. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3348)

Abstract

A ring signature scheme is a group signature scheme with no group manager to setup a group or revoke a signer. A linkable ring signature, introduced by Liu, et al. [20], additionally allows anyone to determine if two ring signatures are signed by the same group member (a.k.a. they are linked). In this paper, we present the first separable linkable ring signature scheme, which also supports an efficient thresholding option. We also present the security model and reduce the security of our scheme to well-known hardness assumptions. In particular, we introduce the security notions of accusatory linkability and non-slanderability to linkable ring signatures. Our scheme supports “event-oriented” linking. Applications to such linking criterion is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM conference on Computer and communications security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. Cryptology ePrint Archive, Report 2004/077 (2004), http://eprint.iacr.org/
  6. 6.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variant. rs RS-98-27, brics (1998)Google Scholar
  8. 8.
    Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solution to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  15. 15.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions, and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/
  19. 19.
    Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-code construction of ring signature schemes and a threshold setting of RST. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 34–46. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick P. Tsang
    • 1
  • Victor K. Wei
    • 1
  • Tony K. Chan
    • 1
  • Man Ho Au
    • 1
  • Joseph K. Liu
    • 1
  • Duncan S. Wong
    • 2
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongShatin, Hong Kong
  2. 2.Department of Computer ScienceThe City University of Hong KongHong Kong

Personalised recommendations