Advertisement

Polyline Fitting of Planar Points Under Min-sum Criteria

  • Boris Aronov
  • Tetsuo Asano
  • Naoki Katoh
  • Kurt Mehlhorn
  • Takeshi Tokuyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3341)

Abstract

Fitting a curve of a certain type to a given set of points in the plane is a basic problem in statistics and has numerous applications. We consider fitting a polyline with k joints under the min-sum criteria with respect to L 1- and L 2-metrics, which are more appropriate measures than uniform and Hausdorff metrics in statistical context. We present efficient algorithms for the 1-joint versions of the problem, and fully polynomial-time approximation schemes for the general k-joint versions.

Keywords

Binary Search Query Time Planar Point Partition Tree Column Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Schieber, B., Tokuyama, T.: Finding a minimum-weight k-link path in graphs with the concave Monge property and applications. Discrete Comput. Geom. 12, 263–280 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P., Aronov, B., Chan, T., Sharir, M.: On Levels in Arrangements of Lines, Segments, Planes, and Triangles. Discrete Comput. Geom. 19, 315–331 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Agarwal, P., Matoušek, J.: Ray shooting and parametric search. SIAM J. Comput. 22, 794–806 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chun, J., Sadakane, K., Tokuyama, T.: Linear time algorithm for approximating a curve by a single-peaked curve. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 6–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Clarkson, K.L., Shor, P.W.: Application of Random Sampling in Computational Geometry. Discrete Comput. Geom. 4, 423–432 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Goodrich, M.: Efficient piecewise-linear function approximation using the uniform metric. Discrete Comput. Geom. 14, 445–462 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hakimi, S., Schmeichel, E.: Fitting polygonal functions to a set of points in the plane. Graphical Models and Image Processing 53, 132–136 (1991)zbMATHCrossRefGoogle Scholar
  8. 8.
    Imai, H., Kato, K., Yamamoto, P.: A linear-time algorithm for linear L 1 approximation of points. Algorithmica 4, 77–96 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Katoh, N., Tokuyama, T.: Notes on computing peaks in k-levels and parametric spanning trees. In: Proc. 17th ACM Symp. on Computational Geometry, pp. 241–248 (2001)Google Scholar
  10. 10.
    Langerman, S., Steiger, W.: Optimization in arrangements. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 50–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Matoušek, J.: Range searching with efficient hierarchical cutting. In: Proc. 8th ACM Symp. on Comput. Geom, pp. 276–287 (1992)Google Scholar
  13. 13.
    Matoušek, J.: Geometric range searching. ACM Computing Surveys 26, 421–461 (1994)Google Scholar
  14. 14.
    Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proc. 8th Annual ACM Symp. Comput. Geom, pp. 16–25 (1992)Google Scholar
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry, an Introduction. Springer-Verlag, New York (1985)Google Scholar
  16. 16.
    Salowe, J.: Parametric Search. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, vol. 37, CRC Press, Boca Raton (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Boris Aronov
    • 1
  • Tetsuo Asano
    • 2
  • Naoki Katoh
    • 3
  • Kurt Mehlhorn
    • 4
  • Takeshi Tokuyama
    • 5
  1. 1.Polytechnic University 
  2. 2.Japan Advanced Institute of Science and Technology 
  3. 3.Kyoto University 
  4. 4.Max-Planck-Institut für Informatik 
  5. 5.Tohoku University 

Personalised recommendations