Techniques for Indexing and Querying Temporal Observations for a Collection of Objects

(Extended Abstract)
  • Qingmin Shi
  • Joseph JaJa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3341)


We consider the problem of dynamically indexing temporal observations about a collection of objects, each observation consisting of a key identifying the object, a list of attribute values and a timestamp indicating the time at which these values were recorded. We make no assumptions about the rates at which these observations are collected, nor do we assume that the various objects have about the same number of observations. We develop indexing structures that are almost linear in the total number of observations available at any given time instance, and that support dynamic additions of new observations in polylogarithmic time. Moreover, these structures allow the quick handling of queries to identify objects whose attribute values fall within a certain range at every time instance of a specified time interval. Provably good bounds are established.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. In: 19th ACM Symposium on Principles of Database Systems, pp. 175–186 (2000)Google Scholar
  3. 3.
    Agarwal, P.K., Govindarajan, S., Muthukrishnan, S.M.: Range searching in categorical data: Colored range searching on grid. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 17–28. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Arge, L., Vitter, J.S.: Optimal dynamic interval management in external memory. In: FOCS 1996, October 1996, pp. 560–569 (1996)Google Scholar
  5. 5.
    Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: 1st Biennial Conf. on Innovative Data Systems Research (2003)Google Scholar
  6. 6.
    Cormen, Leiserson, Rivest: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  7. 7.
    Edelsbrunner, H.: A new approach to rectangle intersections, part I. Int. J. Computer Mathematics 13, 209–219 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gupta, P., Janardan, R., Smid, M.: Computational geometry: generalized intersection searching. In: Handbook of Data Structures and Applications, CRC Press, Boca Raton Google Scholar
  9. 9.
    Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection searching problems: counting, reporting, and dynamization. Journal of Algorithms 19, 282–317 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Janardan, R., Lopez, M.: Generalized intersection searching problems. International Journal of Computational Geometry & Applications 3(1), 39–69 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: PODS 1999, pp. 261–272 (1999)Google Scholar
  12. 12.
    Lanka, S., Mays, E.: Fully persistent B + -trees. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 426–435 (1991)Google Scholar
  13. 13.
    Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: ACM International Workshop on Wireless Sensor Networks and Applications (September 2002)Google Scholar
  14. 14.
    Makris, C., Tsakalidis, A.K.: Algorithms for three-dimensional dominance searching in linear space. Information Processing Letters 66(6), 277–283 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Manolopoulos, Y., Kapetanakis, G.: Overlapping B + -trees for temporal data. In: Proc. of the 5th Jerusalem Conf. on Info. Tech., pp. 491–498 (1990)Google Scholar
  16. 16.
    McCreight, E.M.: Priority search trees. SIAM J. Computing 14(2), 257–276 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Mortensen, C.W.: Generalized static orthogonal range searching in less space. Technical Report TR-2003-22, The IT University of Copenhagen (2003)Google Scholar
  18. 18.
    Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: Proceedings of the ACM Symposium on Applied Computing, February, pp. 235–240 (1998)Google Scholar
  19. 19.
    Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  20. 20.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: VLDB 2000, September, pp. 395–406 (2000)Google Scholar
  21. 21.
    Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of continuously moving objects. In: Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pp. 331–342 (2000)Google Scholar
  22. 22.
    Salzberg, B., Tsotras, V.J.: Comparison of access methods for time-evolving data. ACM Computing Surveys 31(2), 158–221 (1999)CrossRefGoogle Scholar
  23. 23.
    Shi, Q., JáJá, J.: Fast algorithms for a class of temporal range queries. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 91–102. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Shi, Q., JaJa, J.: Optimal and near-optimal algorithms for generalized intersection reporting on pointer machines. Technical Report CS-TR-4542, Institute of Advanced Computer Studies (UMIACS), University of Maryland (2003)Google Scholar
  25. 25.
    Shi, Q., JaJa, J.: Techniques for indexing and querying temporal observations for a collection of objects. Technical Report CS-TR-4503, Institute of Advanced Computer Studies (UMIACS), University of Maryland (2003)Google Scholar
  26. 26.
    Tao, Y., Papadias, D.: Efficient historical R-trees. In: Proceedings of the 13th Int. Conf. on Scientific and Statistical Database Management, pp. 223–232 (2001)Google Scholar
  27. 27.
    Tzouramanis, T., Manolopoulos, Y., Vassilakopoulos, M.: Overlapping Linear Quadtrees: A spatio-temporal access method. In: Proc. of the 6th ACM Symp. on Advances in Geo. Info. Systems (ACM-GIS), Bethesda, MD, pp. 1–7 (1998)Google Scholar
  28. 28.
    Vuillemin, J.: A unifying look at data structures. CACM 23(4), 229–239 (1980)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Qingmin Shi
    • 1
  • Joseph JaJa
    • 1
  1. 1.Institute of Advanced Computer StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations