Error Compensation in Leaf Root Problems

  • Michael Dom
  • Jiong Guo
  • Falk Hüffner
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3341)


The k-Leaf Root problem is a particular case of graph power problems. Here, we study “error correction” versions of k-Leaf Root—that is, for instance, adding or deleting at most l edges to generate a graph that has a k-leaf root. We provide several NP-completeness results in this context, and we show that the NP-complete Closest 3-Leaf Root problem (the error correction version of 3-Leaf Root) is fixed-parameter tractable with respect to the number of edge modifications in the given graph. Thus, we provide the seemingly first nontrivial positive algorithmic results in the field of error compensation for leaf root problems with k > 2. To this end, as a result of independent interest, we develop a forbidden subgraph characterization of graphs with 3-leaf roots.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proc. 43rd FOCS, pp. 238–247. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  2. 2.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. In: SIAM Monographs on Discrete Mathematics and Applications (1999)Google Scholar
  3. 3.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58, 171–176 (1996)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Z.-Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM Journal on Computing 32(4), 864–879 (2003)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fellows, M.R.: New directions and new challenges in algorithm design and complexity, parameterized. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 505–519. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 108–119. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Jiang, T., Lin, G., Xu, J.: On the closest tree kth root problem. In: Manuscript, Department of Computer Science, University of Waterloo (2000)Google Scholar
  11. 11.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing 28(5), 1906–1922 (1999)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kearney, P.E., Corneil, D.G.: Tree powers. Journal of Algorithms 29(1), 111–131 (1998)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Informatica 23(3), 311–323 (1986)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lau, L.C.: Bipartite roots of graphs. In: Proc. 15th ACM-SIAM SODA, pp. 952–961. ACM/SIAM (2004)Google Scholar
  15. 15.
    Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal graphs. SIAM Journal on Discrete Mathematics 18(1), 83–102 (2004)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, G., Kearney, P.E., Jiang, T.: Phylogenetic k-root and steiner k-root. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 539–551. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Lin, Y.L., Skiena, S.S.: Algorithms for square roots of graphs. SIAM Journal on Discrete Mathematics 8(1), 99–118 (1995)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Applied Mathematics 54(1), 81–88 (1994)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Natanzon, A.: Complexity and approximation of some graph modification problems. Master’s thesis, Department of Computer Science, Tel Aviv University (1999)Google Scholar
  20. 20.
    Niedermeier, R.: Ubiquitous parameterization — invitation to fixed-parameter algorithms. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 84–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. Journal of Algorithms 42(1), 69–108 (2002)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131(3), 651–654 (2003)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 379–390. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Dom
    • 1
  • Jiong Guo
    • 1
  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenFed. Rep. of, Germany

Personalised recommendations