The Boolean Closure of Linear Context-Free Languages

  • Martin Kutrib
  • Andreas Malcher
  • Detlef Wotschke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3340)


Closures of linear context-free languages under Boolean operations are investigated. The intersection closure and the complementation closure are incomparable. By closing these closures under further Boolean operations we obtain several new language families. The hierarchy obtained by such closures of closures is proper up to level four, where it collapses to the Boolean closure which, in turn, is incomparable with several closures of the family of context-free languages. The Boolean closure of the linear context-free languages is properly contained in the Boolean closure of the context-free languages. A characterization of a class of non-unary languages that cannot be expressed as a Boolean formula over the linear context-free languages is presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. System Sci. 8, 315–332 (1974)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bordihn, H., Holzer, M., Kutrib, M.: Some non-semi-decidability problems for linear and deterministic context-free languages. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 68–79. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular automata. Acta Inf. 35, 329–352 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)Google Scholar
  5. 5.
    Dyer, C.R.: One-way bounded cellular automata. Inform. Control 44, 261–281 (1980)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)MATHGoogle Scholar
  7. 7.
    Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inform. Control 9, 620–648 (1966)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ibarra, O.H., Jiang, T., Wang, H.: Parallel parsing on a one-way linear array of finite-state machines. Theoret. Comput. Sci. 85, 53–74 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free languages. Math. Systems Theory 7, 185–192 (1973)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Okhotin, A.: Automaton representation of linear conjunctive languages. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 393–404. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)MATHMathSciNetGoogle Scholar
  12. 12.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)MATHGoogle Scholar
  13. 13.
    Smith III, A.R.: Cellular automata and formal languages. In: IEEE Symposium on Switching and Automata Theory, pp. 216–224 (1970)Google Scholar
  14. 14.
    Smith III, A.R.: Real-time language recognition by one-dimensional cellular automata. J. Comput. System Sci. 6, 233–253 (1972)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Terrier, V.: On real time one-way cellular array. Theoret. Comput. Sci. 141, 331–335 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wotschke, D.: The Boolean closures of the deterministic and nondeterministic context-free languages. In: Brauer, W. (ed.) GI 1973. LNCS, vol. 1, pp. 113–121. Springer, Heidelberg (1973)Google Scholar
  17. 17.
    Wotschke, D.: A characterization of Boolean closures of families of languages. In: Böhling, K.-H., Indermark, K. (eds.) GI-Fachtagung 1973. LNCS, vol. 2, pp. 191–200. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  18. 18.
    Wotschke, D.: Nondeterminism and Boolean operations in pda’s. J. Comput. System Sci. 16, 456–461 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 2
  • Detlef Wotschke
    • 2
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany
  2. 2.Institut für InformatikJohann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations