On the Maximum Coefficients of Rational Formal Series in Commuting Variables

  • Christian Choffrut
  • Massimiliano Goldwurm
  • Violetta Lonati
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3340)

Abstract

We study the maximum function of any ℝ + -rational formal series S in two commuting variables, which assigns to every integer n ∈ ℕ, the maximum coefficient of the monomials of degree n. We show that if S is a power of any primitive rational formal series, then its maximum function is of the order Θ(nk / 2λn) for some integer k ≥ –1 and some positive real λ. Our analysis is related to the study of limit distributions in pattern statistics. In particular, we prove a general criterion for establishing Gaussian local limit laws for sequences of discrete positive random variables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bender, E.A.: Central and local limit theorems applied to asymptotic enumeration. Journal of Combinatorial Theory 15, 91–111 (1973)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berstel, J., Reutenauer, C.: Rational series and their languages. Springer-Verlag, Heidelberg (1988)MATHGoogle Scholar
  3. 3.
    Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: On the number of occurrences of a symbol in words of regular languages. Theoretical Computer Science 302(1-3), 431–456 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bertoni, A., Choffrut, C., Goldwurm, M., Lonati, V.: Local limit distributions in pattern statistics: beyond the Markovian models. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 117–128. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    de Falco, D., Goldwurm, M., Lonati, V.: Frequency of symbol occurrences in bicomponent stochastic models. Rapporto Interno n. 299-04, D.S.I. Università degli Studi di Milano, in Theoretical Computer Science (April 2004) ( to appear); Ésik, Z., Fülöp, Z. (eds.): DLT 2003. LNCS, vol. 2710. Springer, Heidelberg (2003)MATHGoogle Scholar
  6. 6.
    Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific, Singapore (1995)Google Scholar
  7. 7.
    Flajolet, P., Sedgewick, R.: The average case analysis of algorithms: multivariate asymptotics and limit distributions. In: Rapport de recherche n. 3162, INRIA Rocquencourt (May 1997)Google Scholar
  8. 8.
    Goldwurm, M., Lonati, V.: Pattern occurrences in multicomponent models. Manuscript (submitted for pubblication) (September 2004)Google Scholar
  9. 9.
    Gnedenko, B.V.: The theory of probability (translated by G. Yankovsky). Mir Publishers, Moscow (1976)Google Scholar
  10. 10.
    Henrici, P.: Elements of numerical analysis. John Wiley, Chichester (1964)MATHGoogle Scholar
  11. 11.
    Hwang, H.K.: Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques. Ph.D. Dissertation, École polytechnique, Palaiseau, France (1994)Google Scholar
  12. 12.
    Kuich, W.: Finite automata and ambiguity. Technical Report n.253, I.I.G. University of Graz (1988)Google Scholar
  13. 13.
    Nicodeme, P., Salvy, B., Flajolet, P.: Motif statistics. Theoretical Computer Science 287(2), 593–617 (2002)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Reutenauer, C.: Propriétés arithmétiques et topologiques de séries rationnelles en variables non commutatives, These Sc. Maths, Doctorat troisieme cycle, Université Paris VI (1977)Google Scholar
  15. 15.
    Sakarovitch, J.: Eléments de théorie des automates, Vuibert Informatique (2003)Google Scholar
  16. 16.
    Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer-Verlag, Heidelberg (1978)MATHGoogle Scholar
  17. 17.
    Schützenberger, M.-P.: Finite counting automata. Information and Control 5, 91–107 (1962)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Seneta, E.: Non-negative matrices and Markov chains. Springer–Verlag, Heidelberg (1981)MATHGoogle Scholar
  19. 19.
    Simon, I.: The nondeterministic complexity of a finite automaton. In: Lothaire, M. (ed.) Mots, Paris. Lecture Notes in Mathematics, Hermes, pp. 384–400 (1990)Google Scholar
  20. 20.
    Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoretical Computer Science 88, 325–349 (1991)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Wich, K.: Exponential ambiguity of context-free grammars. In: Rozenberg, G., Thomas, W. (eds.) Proceedings of the 4th DLT, pp. 125–138. World Scientific, Singapore (2000)Google Scholar
  22. 22.
    Wich, K.: Sublinear ambiguity. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 690–698. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christian Choffrut
    • 1
  • Massimiliano Goldwurm
    • 2
  • Violetta Lonati
    • 2
  1. 1.L.I.A.F.A.Université Paris VIIParisFrance
  2. 2.Dipartimento di Scienze dell’InformazioneUniversit degli Studi di MilanoMilanoItaly

Personalised recommendations