Advertisement

Skeletonization of Fingerprint Based-on Modulus Minima of Wavelet Transform

  • Xinge You
  • Jianwei Yang
  • Yuan Yan Tang
  • Bin Fang
  • Luoqing Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3338)

Abstract

This paper presents a direct and general algorithm based on the local minima of wavelet transform moduli for computing skeletons of fingerprint objects. The development of the method is inspired by some desirable characteristics of the local minimum of wavelet transform moduli. These significant properties are substantially investigated and corresponding results are mathematically proven with respect to a special wavelet function. A minima-modulus-theoretic algorithm is developed to extract skeletons of the fingerprint with a wide variety of width structures. We tested the algorithm on the natural fingerprint image with a variety of widths structures in gray image and binary image. Experimental results show that the skeletons of object obtained from the proposed algorithm overcome greatly some of the undesirable effects and limitations of previous methods, moreover, the proposed algorithm is insensitive to noise as well as efficient computability.

Keywords

Wavelet Transform Wavelet Function Single Pixel Fingerprint Image Skeleton Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anh, V., Shi, J.Y., Tsui, H.T.: Scaling theorems for zero-crossings of band limited signals. IEEE Trans. Pattern Anal. Mach. Intell. 18, 309–320 (1990)CrossRefGoogle Scholar
  2. 2.
    Blum, H.: A transformation for extracting new desxriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. The MIT Press, Cambridge (1967)Google Scholar
  3. 3.
    Brady, M.: Criteria for Representation of Shape. In: Beck, J., Hope, B., Rosenfeld, A. (eds.) Human and Machine Vision, pp. 39–84. Academic Press, New York (1983)Google Scholar
  4. 4.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  5. 5.
    Chui, C.K., Quak, E.: Wavelets on a bounded interval. In: Brasess, D., et al. (eds.) Numerical Methods in Approximation Theory, vol. 9, pp. 53–65. Birhauser Verlag, Basel (1992)Google Scholar
  6. 6.
    Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Koh, Y.W., Lee, S.L., Tan, H.H.: Periodic orthogonal splines and wavelets. Applied and Computational Harmonic Analysis 2, 201–218 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning Methodologies - a Comprehensive Survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992)CrossRefGoogle Scholar
  9. 9.
    Leyton, M.: A process-grammar for shape. Artificial Intell. 34, 213–247 (1988)CrossRefGoogle Scholar
  10. 10.
    Mallat, S.: Multiresolution approximations and wavelet. Trans. Amer. Math. Soc. 11, 69–88 (1989)MathSciNetGoogle Scholar
  11. 11.
    Mallat, S.: Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  12. 12.
    Mallat, S.G., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617–643 (1992)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Tang, Y.Y., Yang, L.H., Liu, J.M.: Characterization of Dirac-Structure Edges with Wavelet Transform. IEEE Trans. Systems, Man, Cybernetics (B) 31, 93–109 (2000)CrossRefGoogle Scholar
  14. 14.
    Tang, Y.Y., You, X.G.: Skeletonization of ribbon-like shapes based on a new wavelet function. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1118–1133 (2003)CrossRefGoogle Scholar
  15. 15.
    Unser, M., Aldroubi, A., Eden, M.: The polynomial spline pyramid. IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–378 (1993)CrossRefGoogle Scholar
  16. 16.
    Wang, Y.-P., Lee, S.L.: Scale-space derived from B-splines. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1040–1050 (1998)CrossRefGoogle Scholar
  17. 17.
    You, X., Tang, Y.Y., Sun, L.: Skeletonization of Ribbon-like Shapes with New Wavelet Function. In: The First International Conference on Machine Learning and Cybernetics, China (November 2002)Google Scholar
  18. 18.
    Zou, J.J.: Skeleton Represetation of Ribbon-like Shapes. Phd thesis, School of Electical and Information Engineering, University of Sydney, Sydney (March 2001)Google Scholar
  19. 19.
    Zou, J.J., Yan, H.: Skeletonization of Ribbon-Like shapes Based on Regularity and Singularity Analyses. IEEE Trans. Systems. Man. Cybernetics (B) 21, 401–407 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xinge You
    • 1
    • 2
  • Jianwei Yang
    • 1
  • Yuan Yan Tang
    • 1
  • Bin Fang
    • 1
  • Luoqing Li
    • 2
  1. 1.Department of Computer ScienceHong Kong Baptist UniversityHong Kong
  2. 2.Faculty of Mathematics and Computer ScienceHubei UniversityChina

Personalised recommendations