Face Recognition Under Varying Lighting Based on Derivates of Log Image

  • Laiyun Qing
  • Shiguang Shan
  • Wen Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3338)


This paper considers the problem of recognizing faces under varying illuminations. First, we investigate the statistics of the derivative of the irradiance images (log) of human face and find that the distribution is very sparse. Based on this observation, we propose an illumination insensitive distance measure based on the min operator of the derivatives of two images. Our experiments on the CMU-PIE database have shown that the proposed method improves the performance of a face recognition system when the probes are collected under varying lighting conditions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adini, Y., Moses, Y., Ullman, S.: Face Recognition: The Problem of Compensting for changes in illumination Direction. IEEE Trans. On PAMI. 19(7), 721–732 (1997)Google Scholar
  2. 2.
    Basri, R., Jacobs, D.: Lambertian Reflectance and Linear Subspaces. In: Proc. ICCV 2001, pp. 383–390 (2001)Google Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs Fisherfaces: recognition using class specific linear projection. IEEE Trans. On PAMI. 20(7) (1997)Google Scholar
  4. 4.
    Belhumeur, P.N., Jacobs, D.W.: Comparing images under variable illumination. In: Proc. CVPR 1998 (1998)Google Scholar
  5. 5.
    Blanz, V., Vetter, T.: Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans. on PAMI. 25(9), 1–12 (2003)Google Scholar
  6. 6.
    Chen, H.F., Belhumeur, P.N., Jacobs, D.W.: Search of Illumination Invariants. In: Proc. CVPR 2000, vol. 1, pp. 1254–1261 (2000)Google Scholar
  7. 7.
    Dror, R.O., Leung, T.K., Adelson, E.H., Willsky, A.S.: Statistics of real-world illumination. In: Proc. CVPR 2001 (2001)Google Scholar
  8. 8.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Differing Pose and Lighting. IEEE Trans. On PAMI. 23(6), 643–660 (2001)Google Scholar
  9. 9.
    Hallinan, P.: A Low-Dimensional Representation of Human Faces for Arbitrary Lightening Conditions. In: Proc. CVPR 1994., pp. 995–999 (1994)Google Scholar
  10. 10.
    Moghaddam, B., Jebara, T., Pentland, A.: Bayesian Face Recognition. Pattern Recognition 33, 1771–1782 (2000)CrossRefGoogle Scholar
  11. 11.
    Moses, Y., Adini, Y., Ullman, S.: Face Recognition: the Problem of Compensating for Changes in Illumination Direction. In: Proc. ECCV 1994, vol. I, pp. 286–296 (1994)Google Scholar
  12. 12.
    Phillips, P.J., Moon, H., et al.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans. On PAMI 22(10), 1090–1104 (2000)Google Scholar
  13. 13.
    Phillips, P.J., Grother, P., Micheals, R.J., Blackburn, D.M., Tabassi, E., Bone, J.M.: FRVT 2002: Evaluation Report (March 2003), http://www.frvt.org/DLs/FRVT_2002_Evaluation_Report.pdf
  14. 14.
    Shan, S., Gao, W., Cao, B., Zhao, D.: Illumination Normalization for Robust Face Recognition against Varying Lighting Conditions. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, pp. 157–164 (2003)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of cognitive neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  16. 16.
    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proc. SIGGRAPH 2001, pp. 497–500 (2001)Google Scholar
  17. 17.
    Shashua: On photometric issues in 3D visual recognition from a single 2D image. IJCV 21(1-2), 99–122 (1997)CrossRefGoogle Scholar
  18. 18.
    Shashua, Riklin-Raviv, T.: The Quotient Image: Class-Based Re-Rendering and Recognition With Varying Illuminations. In: IEEE Trans. on PAMI., pp. 129–139 (2001)Google Scholar
  19. 19.
    Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database. In: Proc. FG 2002 (2002)Google Scholar
  20. 20.
    Weiss, Y.: Deriving intrinsic images from image sequences. In: Proc. ICCV 2001, vol. II, pp. 68–75 (2001)Google Scholar
  21. 21.
    Zhao, W.Y., Chellappa, R., Rosenfeld, A., et al.: Face recognition: A literature survey. UMD CfAR Technical Report CAR-TR-948 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Laiyun Qing
    • 1
    • 2
  • Shiguang Shan
    • 2
  • Wen Gao
    • 1
    • 2
  1. 1.Graduate SchoolCASBeijingChina
  2. 2.ICT-ISVISION Joint R&D Laboratory for Face RecognitionCASBeijingChina

Personalised recommendations