Novel Face Detection Method Based on Gabor Features

  • Jie Chen
  • Shiguang Shan
  • Peng Yang
  • Shengye Yan
  • Xilin Chen
  • Wen Gao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3338)

Abstract

Gabor-based Face representation has achieved great success in face recognition, while whether and how it can be applied to face detection is rarely studied. This paper originally investigates the Gabor feature based face detection method, and proposes a coarse-to-fine hierarchical face detector combining the high efficiency of Harr features and the excellent discriminating power of the Gabor features. Gabor features are AdaBoosted to form the final verifier after the cascade of Harr-based AdaBoost face detector. Extensive experiments are conducted on several face databases and verified the effectiveness of the proposed approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buhlmann, P., Yu, B.: Invited discussion on Additive logistic regressions: a statistical view of boosting (Friedman, Hastie and Tibshirani). The Annual of Statistics 28(2), 377–386 (2000)Google Scholar
  2. 2.
    Chen, J., Gao, W.: Expand Training Set for Face Detection by GA Re-sampling. In: The 6th IEEE International Conference on Automatic Face and Gesture Recognition (FG2004), pp. 73–79 (2004)Google Scholar
  3. 3.
    Fasel, I.R., Bartlett, M.S., Movellan, J.R.: A comparison of Gabor filter methods for automatic detection of facial landmarks. In: Proceedings of the 5th International Conference on Face and Gesture Recognition (2002)Google Scholar
  4. 4.
    Huang, L.-L., Shimizu, A., Kobatake, H.: Classification-Based Face Detection Using Gabor Filter Features. In: The 6th IEEE International Conference on Automatic Face and Gesture Recognition (FG2004), pp. 397–402 (2004)Google Scholar
  5. 5.
    Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Anal. Machine Intell. 24, 696–706 (2002)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Shum, H.Y.: Kullback-Leibler Boosting. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003 (2003)Google Scholar
  7. 7.
    Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J., Shum, H.: Statistical Learning of Multi-View Face Detection. In: Proceedings of the 7th European Conference on Computer Vision (2002)Google Scholar
  8. 8.
    Liu, C.J.: A Bayesian Discriminating Features Method for Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 725–740 (2003)CrossRefGoogle Scholar
  9. 9.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proc. IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition, June 1997, pp. 130–136 (1997)Google Scholar
  10. 10.
    Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proc. 6th Int. Conf. Computer Vision, January 1998, pp. 555–562 (1998)Google Scholar
  11. 11.
    Phillips, P.J., Moon, H., Rauss, P.: The FERET Evaluation Methodology for Face-Recognition Algorithms. Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 137–143 (1997)Google Scholar
  12. 12.
    Rowley, H.A., Baluja, S., Kanade, T.: Neural Network-Based Face Detection. IEEE Tr. Pattern Analysis and Machine Intel. 20, 23–38 (1998)CrossRefGoogle Scholar
  13. 13.
    Rowley, H.A., Baluja, S., Kanade, T.: Rotation Invariant Neural Network-Based Face Detection. In: Conf. Computer Vision and Pattern Rec., pp. 38–44 (1998)Google Scholar
  14. 14.
    Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces. Computer Vision and Pattern Recognition, 746–751 (2000)Google Scholar
  15. 15.
    Sung, K.K., Poggio, T.: Example-Based Learning for View-Based Human Face Detection. IEEE Trans. on PAMI 20(1), 39–51 (1998)Google Scholar
  16. 16.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Conf. Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  17. 17.
    Wiskott, L., Fellous, J., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. PAMI 19(7), 669–775 (1997)Google Scholar
  18. 18.
    Xiao, R., Li, M.J., Zhang, H.J.: Robust Multipose Face Detection in Images. IEEE Trans on Circuits and Systems for Video Technology 14(1), 31–41 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Yang, M.H., Roth, D., Ahuja, N.: A SNoW-Based Face Detector. In: Advances in Neural Information Processing Systems, vol. 12, pp. 855–861. MIT Press, Cambridge (2000)Google Scholar
  20. 20.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Tr. Pattern Analysis and Machine Intelligence 24, 34–58 (2002)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    http://www.ai.mit.edu/projects/cbcl/ software-dataset / index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jie Chen
    • 1
  • Shiguang Shan
    • 2
  • Peng Yang
    • 2
  • Shengye Yan
    • 2
  • Xilin Chen
    • 2
  • Wen Gao
    • 1
    • 2
  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyChina
  2. 2.ICT-ISVISION JDL for AFR, Institute of Computing TechnologyCASBeijingChina

Personalised recommendations