Advertisement

Semantic Reference Model in Medical Time Series

  • Fernando Alonso
  • Loïc Martínez
  • César Montes
  • Aurora Pérez
  • Agustín Santamaría
  • Juan Pedro Valente
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3337)

Abstract

The analysis of time series databases is very important in the area of medicine. Most of the approaches that address this problem are based on numerical algorithms that calculate distances, clusters, index trees, etc. However, a domain-dependent analysis sometimes needs to be conducted to search for the symbolic rather than numerical characteristics of the time series. This paper focuses on our work on the discovery of reference models in time series of isokinetics data and a technique that transforms the numerical time series into symbolic series. We briefly describe the algorithm used to create reference models for population groups and its application in the real world. Then, we describe a method based on extracting semantic information from a numerical series. This symbolic information helps users to efficiently analyze and compare time series in the same or similar way as a domain expert would.

Domain:Time series analysis

Keywords

Time series characterization semantic reference model isokinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, F., Lopez-Chavarrías, I., Caraça-Valente, J.P., Montes, C.: Knowledge Discovery in Time Series Using Expert Knowledge. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery. Physica-Verlag, Heidelberg (2001)Google Scholar
  2. 2.
    Agrawal, R., Faloutsos, C., Swam, A.N.: Efficient Similarity Search In Sequence Databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)Google Scholar
  3. 3.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time series databases. In: Proceedings of SIGMOD, Minneapolis, MN, pp. 419–429 (1994b)Google Scholar
  4. 4.
    Rafei, D., Mendelzo, A.: Similarity-Based Queries for Time Series Data. In: Proceedings of SIGMOD, Arizona (1997)Google Scholar
  5. 5.
    Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time series database. In: Proceedings of the 4th international conference on knowledge discovery and data mining, CA, pp. 214–218. AAAI Press, Menlo Park (1998)Google Scholar
  6. 6.
    Alonso, F., Valente, J.P., Martínez, L., Montes, C.: Discovering Patterns and Reference Models in the Medical Domain of Isokinetics. In: Zurada, J.M. (ed.) New Generations of Data Mining Applications. IEEE Press/Wiley (2004) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fernando Alonso
    • 1
  • Loïc Martínez
    • 1
  • César Montes
    • 1
  • Aurora Pérez
    • 1
  • Agustín Santamaría
    • 1
  • Juan Pedro Valente
    • 1
  1. 1.Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del Monte, MadridSpain

Personalised recommendations