Uniform Coverings of 2-Paths with 6-Paths in the Complete Graph

  • Jin Akiyama
  • Midori Kobayashi
  • Gisaku Nakamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3330)

Abstract

Let n ≥ 7. Then there exists a uniform covering of 2-paths with 6-paths in Kn if and only if n ≡ 0,1,2 (mod 5).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinrich, K., Kobayashi, M., Nakamura, G.: Dudeney’s round table problem. Discrete Mathematics 92, 107–125 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Heinrich, K., Langdeau, D., Verrall, H.: Covering 2-paths uniformly. J. Combin. Des. 8, 100–121 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Heinrich, K., Nonay, G.: Exact coverings of 2-paths by 4-cycles. J. Combin. Theory (A) 45, 50–61 (1987)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kobayashi, M.: Kiyasu, Z. and G. Nakamura, A solution of Dudeney’s round table problem for an even number of people. J. Combinatorial Theory (A) 62, 26–42 (1993)CrossRefGoogle Scholar
  5. 5.
    Kobayashi, M., Nakamura, G.: Uniform coverings of 2-paths by 4-paths. Australasian J. Combin. 24, 301–304 (2001)MATHMathSciNetGoogle Scholar
  6. 6.
    Kobayashi, M., Nakamura, G., Nara, C.: Uniform coverings of 2-paths with 5-paths in K 2n. Australasian J. Combin. 27, 247–252 (2003)MATHMathSciNetGoogle Scholar
  7. 7.
    Kobayashi, M., Nakamura, G., Nara, C.: Uniform coverings of 2-paths with 5-paths in the complete graph (accepted)Google Scholar
  8. 8.
    Kobayashi, M., Nakamura, G.: Uniform coverings of 2-paths with 6-cycles in the complete graph (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jin Akiyama
    • 1
  • Midori Kobayashi
    • 2
  • Gisaku Nakamura
    • 1
  1. 1.Research Institute of Educational DevelopmentTokai UniversityShibuya-ku TokyoJapan
  2. 2.School of Administration and InformaticsUniversity of ShizuokaShizuokaJapan

Personalised recommendations