Advertisement

OAEP 3-Round:A Generic and Secure Asymmetric Encryption Padding

  • Duong Hieu Phan
  • David Pointcheval
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3329)

Abstract

The OAEP construction is already 10 years old and well-established in many practical applications. But after some doubts about its actual security level, four years ago, the first efficient and provably IND-CCA1 secure encryption padding was formally and fully proven to achieve the expected IND-CCA2 security level, when used with any trapdoor permutation. Even if it requires the partial-domain one-wayness of the permutation, for the main application (with the RSA permutation family) this intractability assumption is equivalent to the classical (full-domain) one-wayness, but at the cost of an extra quadratic-time reduction. The security proof which was already not very tight to the RSA problem is thus much worse.

However, the practical optimality of the OAEP construction is two-fold, hence its attractivity: from the efficiency point of view because of two extra hashings only, and from the length point of view since the ciphertext has a minimal bit-length (the encoding of an image by the permutation.) But the bandwidth (or the ratio ciphertext/plaintext) is not optimal because of the randomness (required by the semantic security) and the redundancy (required by the plaintext-awareness, the sole way known to provide efficient CCA2 schemes.)

At last Asiacrypt ’03, the latter intuition had been broken by exhibiting the first IND-CCA2 secure encryption schemes without redundancy, and namely without achieving plaintext-awareness, while in the random-oracle model: the OAEP 3-round construction. But this result achieved only similar practical properties as the original OAEP construction: the security relies on the partial-domain one-wayness, and needs a trapdoor permutation, which limits the application to RSA, with still a quite bad reduction.

This paper improves this result: first we show the OAEP 3-round actually relies on the (full-domain) one-wayness of the permutation (which improves the reduction), then we extend the application to a larger class of encryption primitives (including ElGamal, Paillier, etc.) The extended security result is still in the random-oracle model, and in a relaxed CCA2 model (which lies between the original one and the replayable CCA scenario.)

Keywords

Random Oracle Random String Asymmetric Encryption Challenge Ciphertext Decryption Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signatures and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in Public-Key Encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Sahai, A.: Non-Malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Boneh, D.: Simplified OAEP for the RSA and Rabin Functions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Information Theory IT–31(4), 469–472 (1985)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. IEICE Transaction of Fundamentals of Electronic Communications and Computer Science E83-A(1), 24–32 (2000)Google Scholar
  12. 12.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA–OAEP is Secure under the RSA Assumption. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 260–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA–OAEP is Secure under the RSA Assumption. Journal of Cryptology 17(2), 81–104 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and System Sciences 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jaulmes, E., Joux, A.: A Chosen Ciphertext Attack on NTRU. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Naor, M., Yung, M.: Public-Key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: Proc. of the 22nd STOC, pp. 427–437. ACM Press, New York (1990)Google Scholar
  18. 18.
    Okamoto, T., Pointcheval, D.: REACT: Rapid Enhanced-security Asymmetric Cryptosystem Transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Paillier, P.: Public-Key Cryptosystems Based on Discrete Logarithms Residues. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Phan, D.H., Pointcheval, D.: Chosen-Ciphertext Security without Redundancy. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 1–18. Springer, Heidelberg (2003), Full version available from http://www.di.ens.fr/users/pointche/ CrossRefGoogle Scholar
  22. 22.
    Phan, D.H., Pointcheval, D.: OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 63–77. Springer, Heidelberg (2004); Full version available from http://www.di.ens.fr/users/pointche/ CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D.: Chosen-Ciphertext Security for any One-Way Cryptosystem. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 129–146. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Pointcheval, D.: How to Encrypt Properly with RSA. CryptoBytes 5(1), 10–19 (winter/spring 2002)Google Scholar
  25. 25.
    Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  26. 26.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shoup, V.: A Proposal for an ISO Standard for Public-Key Encryption (December 2001) ISO/IEC JTC 1/SC27Google Scholar
  28. 28.
    Shoup, V.: OAEP Reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Duong Hieu Phan
    • 1
  • David Pointcheval
    • 1
  1. 1.Dépt d’informatiqueÉcole normale supérieureParisFrance

Personalised recommendations