Advertisement

The Davies-Murphy Power Attack

  • Sébastien Kunz-Jacques
  • Frédéric Muller
  • Frédéric Valette
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3329)

Abstract

In this paper, we introduce a new power analysis attack against DES. It is based on the well known Davies-Murphy attack. As for the original attack, we take advantage of non-uniform output distributions for two adjacent S-boxes. We show how to detect these biased distributions by power analysis on any DES inner round and thus obtain one bit of information about the key.

An advantage of this new attack is that no information about DES inputs or outputs is required. Therefore it is likely to defeat many actual countermeasures, in particular the popular masking techniques.

Keywords

Electric Consumption Block Cipher Intermediate Data Data Encryption Standard Collision Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power Analysis, What Is Now Possible.. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Akkar, M.-L., Bevan, R., Goubin, L.: Two Power Analysis Attacks against One-Mask Methods. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 332–347. Springer, Heidelberg (2004) (Pre-proceedings Version)CrossRefGoogle Scholar
  3. 3.
    Akkar, M.-L., Giraud, C.: An Implementation of DES and AES Secure against Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Akkar, M.-L., Goubin, L.: A Generic Protection against High-Order Differential Power Analysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 192–205. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Biryukov, A.: An Improvement of Davies’ Attack on DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 461–467. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Biham, E., Shamir, A.: Power Analysis of the Key Scheduling of the AES Candidates. In: Second AES Candidate Conference (1999)Google Scholar
  8. 8.
    Boneh, D., DeMillo, R., Lipton, R.: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Brier, E., Clavier, C., Olivier, F.: Optimal Statistical Power Analysis (2003), Available on Eprint, http://eprint.iacr.org/2003/152/
  10. 10.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential Power Analysis in the Presence of Hardware Countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Davies, D., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of Cryptology 8(1), 1–25 (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis, The “Duplication” Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Others Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Ledig, H., Muller, F., Valette, F.: Enhancing Collision Attacks. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  16. 16.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  17. 17.
    Messerges, T.: Using Second-Order Power Analysis to Attack DPA Resistant software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Messerges, T., Dabbish, E., Sloan, R.: Investigations of Power Analysis Attacks on Smartcards. In: USENIX Workshop on Smartcard Technology 1999 (1999), Available at http://www.usenix.org/
  19. 19.
    NIST FIPS PUB 46-3. Data Encryption Standard (1977)Google Scholar
  20. 20.
    Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Waddle, J., Wagner, D.: Towards Efficient Second Order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sébastien Kunz-Jacques
    • 1
  • Frédéric Muller
    • 1
  • Frédéric Valette
    • 1
  1. 1.DCSSI Crypto LabParis, 07 SPFrance

Personalised recommendations