Advertisement

How Far Can We Go Beyond Linear Cryptanalysis?

  • Thomas Baignères
  • Pascal Junod
  • Serge Vaudenay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3329)

Abstract

Several generalizations of linear cryptanalysis have been proposed in the past, as well as very similar attacks in a statistical point of view. In this paper, we define a rigorous general statistical framework which allows to interpret most of these attacks in a simple and unified way. Then, we explicitely construct optimal distinguishers, we evaluate their performance, and we prove that a block cipher immune to classical linear cryptanalysis possesses some resistance to a wide class of generalized versions, but not all. Finally, we derive tools which are necessary to set up more elaborate extensions of linear cryptanalysis, and to generalize the notions of bias, characteristic, and piling-up lemma.

Keywords

Block ciphers linear cryptanalysis statistical cryptanalysis 

References

  1. 1.
    Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of stream ciphers with linear masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 515–532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley & Sons, Chichester (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Information Security and Cryptography. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester (1968)zbMATHGoogle Scholar
  6. 6.
    Handschuh, H., Gilbert, H.: χ 2 cryptanalysis of the SEAL encryption algorithm. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 1–12. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Harpes, C., Kramer, G., Massey, J.: A generalization of linear cryptanalysis and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Harpes, C., Massey, J.: Partitioning cryptanalysis. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 13–27. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Jakobsen, T.: Higher-order cryptanalysis of block ciphers. PhD thesis, Department of Mathematics, Technical University of Denmark (1999)Google Scholar
  10. 10.
    Jakobsen, T., Harpes, C.: Non-uniformity measures for generalized linear cryptanalysis and partitioning cryptanalysis. In: Pribyl, J. (ed.) Pragocrypt 1996. CTU Publishing House (1996)Google Scholar
  11. 11.
    Junod, P.: On the optimality of linear, differential and sequential distinguishers. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Junod, P., Vaudenay, S.: Optimal key ranking procedures in a statistical cryptanalysis. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Kelsey, J., Schneier, B., Wagner, D.: modn cryptanalysis, with applications against RC5P and M6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 139–155. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Knudsen, L., Robshaw, M.: Non-linear approximations in linear cryptanalysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Lai, X., Massey, J., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  17. 17.
    Lim, C.H.: CRYPTON: A new 128-bit block cipher. In: The First AES Candidate Conference. National Institute for Standards and Technology (1998)Google Scholar
  18. 18.
    Lim, C.H.: A revised version of CRYPTON: CRYPTON V1.0. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Lu, Y., Vaudenay, S.: Cryptanalysis of Bluetooth Keystream Generator Two-level E0. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 483–499. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Lu, Y., Vaudenay, S.: Faster correlation attack on Bluetooth keystream generator E0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 407–425. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Matsui, M.: The first experimental cryptanalysis of the Data Encryption Standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)Google Scholar
  23. 23.
    Matsui, M.: New structure of block ciphers with provable security against differential and linear cryptanalysis. In: Gollman, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 205–218. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Minier, M., Gilbert, H.: Stochastic cryptanalysis of Crypton. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 121–133. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Murphy, S., Piper, F., Walker, M., Wild, P.: Likelihood estimation for block cipher keys. Technical report, Information Security Group, University of London, England (1995)Google Scholar
  26. 26.
    National Institute of Standards and Technology, U. S. Department of Commerce. Data Encryption Standard, NIST FIPS PUB 46-2 (1993)Google Scholar
  27. 27.
    Parker, M.: Generalized S-Box linearity. Technical report nes/doc/uib/wp5/020/a, NESSIE Project (2003), Available on https://www.cryptonessie.org
  28. 28.
    Shimoyama, T., Kaneko, T.: Quadratic relation of S-Box and its application to the linear attack of full round DES. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 200–211. Springer, Heidelberg (1998)Google Scholar
  29. 29.
    Standaert, F.-X., Rouvroy, G., Piret, G., Quisquater, J.-J., Legat, J.-D.: Key-dependent approximations in cryptanalysis: an application of multiple Z4 and non-linear approximations. In: 24th Symposium on Information Theory in the Benelux (2003)Google Scholar
  30. 30.
    Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer, Heidelberg (1992)Google Scholar
  31. 31.
    Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: 3rd ACM Conference on Computer and Communications Security, pp. 139–147. ACM Press, New York (1996)CrossRefGoogle Scholar
  32. 32.
    Vaudenay, S.: On the security of CS-cipher. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 260–274. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  33. 33.
    Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryptology 16(4), 249–286 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wagner, D.: Towards a unifying view of block cipher cryptanalysis. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 16–33. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Baignères
    • 1
  • Pascal Junod
    • 1
  • Serge Vaudenay
    • 1
  1. 1.EPFL 

Personalised recommendations