Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes

  • Ron Steinfeld
  • Huaxiong Wang
  • Josef Pieprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3329)


We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases.

Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (Geometry of Numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.


Shamir secret-sharing changeable threshold lattice reduction geometry of numbers 


  1. 1.
    Ajtai, M., Kumar, R., Sivakumar, D.: A Sieve Algorithm for the Shortest Lattice Vector Problem. In: Proc. 33rd ACM Symp. on Theory of Comput., pp. 601–610. ACM Press, New York (2001)Google Scholar
  2. 2.
    Asmuth, C., Bloom, J.: A Modular Approach to Key Safeguarding. IEEE Trans. on Information Theory 29, 208–210 (1983)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Babai, L.: On Lovasz’ Lattice Reduction and the Nearest Lattice Point Problem. Combinatorica 6 (1986)Google Scholar
  4. 4.
    Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully Dynamic Secret Sharing Schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Desmedt, Y., Jajodia, S.: Redistributing Secret Shares to New Access Structures and Its Application. Technical Report ISSE TR-97-01, George Mason University (1997)Google Scholar
  6. 6.
    Goldreich, O., Ron, D., Sudan, M.: Chinese Remaindering with Errors. IEEE Transactions on Information Theory 46, 1330–1338 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1993)MATHGoogle Scholar
  8. 8.
    Gruber, P., Lekkerkerker, C.: Geometry of Numbers. Elsevier Science Publishers, Amsterdam (1987)MATHGoogle Scholar
  9. 9.
    Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon Codes and Algebraic-Geometric Codes. IEEE Trans. Inf. Th. 45, 1757–1767 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hlawka, E., Schoiβengeier, J., Taschner, R.: Geometric and Analytic Number Theory. Springer, Heidelberg (1991)MATHGoogle Scholar
  11. 11.
    Kannan, R.: Algorithmic Geometry of Numbers. Annual Review of Comp. Sci. 2, 231–267 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational Coefficients. Mathematische Annalen 261, 515–534 (1982)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maeda, A., Miyaji, A., Tada, M.: Efficient and Unconditionally Secure Verifiable Threshold Changeable Scheme. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 402–416. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Martin, K.: Untrustworthy Participants in Secret Sharing Schemes. In: Cryptography and Coding III, pp. 255–264. Oxford University Press, Oxford (1993)Google Scholar
  15. 15.
    Martin, K., Pieprzyk, J., Safavi-Naini, R., Wang, H.: Changing Thresholds in the Absence of Secure Channels. Australian Computer Journal 31, 34–43 (1999)MATHGoogle Scholar
  16. 16.
    Martin, K., Safavi-Naini, R., Wang, H.: Bounds and Techniques for Efficient Redistribution of Secret Shares to New Access Structures. The Computer Journal 8 (1999)Google Scholar
  17. 17.
    Quisquater, M., Preneel, B., Vandewalle, J.: On the Security of the Threshold Scheme Based on the Chinese Remainder Theorem. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 199–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Shamir, A.: How To Share a Secret. Comm. of the ACM 22, 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shokrollahi, M.A., Wasserman, H.: List Decoding of Algebraic-Geometric Codes. IEEE Transactions on Information Theory 45, 432–437 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shparlinski, I.E.: Sparse Polynomial Approximation in Finite Fields. In: Proc. 33rd STOC, pp. 209–215. ACM Press, New York (2001)Google Scholar
  21. 21.
    Shparlinski, I.E., Steinfeld, R.: Noisy Chinese Remaindering in the Lee Norm. Journal of Complexity 20, 423–437 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Steinfeld, R., Pieprzyk, J., Wang, H.: Dealer-Free Threshold Changeability for Standard CRT Secret-Sharing Schemes (2004) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ron Steinfeld
    • 1
  • Huaxiong Wang
    • 1
  • Josef Pieprzyk
    • 1
  1. 1.Dept. of ComputingMacquarie UniversityNorth RydeAustralia

Personalised recommendations