Abstract

The class of visibly pushdown languages has been recently defined as a subclass of context-free languages with desirable closure properties and tractable decision problems. We study visibly pushdown games, which are games played on visibly pushdown systems where the winning condition is given by a visibly pushdown language. We establish that, unlike pushdown games with pushdown winning conditions, visibly pushdown games are decidable and are 2Exptime-complete. We also show that pushdown games against Ltl specifications and Caret specifications are 3Exptime-complete. Finally, we establish the topological complexity of visibly pushdown languages by showing that they are a subclass of Boolean combinations of Σ 3 sets. This leads to an alternative proof that visibly pushdown automata are not determinizable and also shows that visibly pushdown games are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, STOC 2004 (2004)Google Scholar
  3. 3.
    Ball, T., Rajamani, S.: Bebop: A symbolic model checker for boolean programs. In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bouquet, A., Serre, O., Walukiewicz, I.: Pushdown games with unboundedness and regular conditions. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 88–99. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Cachat, T., Duparc, J., Thomas, W.: Solving pushdown games with a Σ3 winning condition. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 322–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Kechris, A.S.: Classical Descriptive Set Theory. Graduate texts in mathematics, vol. 156. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Martin, D.A.: Borel Determinacy. Annals of Mathematics 102, 363–371 (1975)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM Symposium on Principles of Programming Languages, Austin (January 1989)Google Scholar
  10. 10.
    Reps, T., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via graph reachability. In: Proc. of ACM Symp. POPL, pp. 49–61 (1995)Google Scholar
  11. 11.
    Serre, O.: Games with winning conditions of high borel complexity. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1150–1162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Staiger, L.: ω-Languages. In: Handbook of Formal Language Theory, vol. III, Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Thomas, W.: Languages, Automata, and Logic. In: Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Walukiewicz, I.: Pushdown processes: Games and model checking. Information and Computation 164(2) (January 2001)Google Scholar
  16. 16.
    Walukiewicz, I.: A landscape with games in the background. To appear in Proceedings of LICS 2004 (2004) (Invited talk)Google Scholar
  17. 17.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200(1-2), 135–183 (1998)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christof Löding
    • 1
  • P. Madhusudan
    • 2
  • Olivier Serre
    • 1
  1. 1.LIAFAUniversité Paris VIIFrance
  2. 2.University of Pennsylvania 

Personalised recommendations