Join Algorithms for the Theory of Uninterpreted Functions

  • Sumit Gulwani
  • Ashish Tiwari
  • George C. Necula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)


The join of two sets of facts, E 1 and E 2, is defined as the set of all facts that are implied independently by both E 1 and E 2. Congruence closure is a widely used representation for sets of equational facts in the theory of uninterpreted function symbols (UFS). We present an optimal join algorithm for special classes of the theory of UFS using the abstract congruence closure framework. Several known join algorithms, which work on a strict subclass, can be cast as specific instantiations of our generic procedure. We demonstrate the limitations of any approach for computing joins that is based on the use of congruence closure. We also mention some interesting open problems in this area.


Decision Procedure Abstract Interpretation Congruence Class Product Construction Linear Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In: 5th Annual ACM Symposium on POPL, pp. 1–11. ACM, New York (1988)Google Scholar
  2. 2.
    Bachmair, L., Tiwari, A., Vigneron, L.: Abstract congruence closure. J. of Automated Reasoning 31(2), 129–168 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: ACM PLDI 2003, pp. 196–207 (2003)Google Scholar
  4. 4.
    Briggs, P., Cooper, K.D., Simpson, L.T.: Value numbering. Software Practice and Experience 27(6), 701–724 (1997)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: 4th Annual ACM Symposium on Principles of Programming Languages, pp. 234–252 (1977)Google Scholar
  6. 6.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Fifth ACM Symposium on POPL, pp. 84–96 (1978)Google Scholar
  7. 7.
    Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems 13(4), 451–490 (1990)CrossRefGoogle Scholar
  8. 8.
    Gulwani, S., Necula, G.C.: A polynomial-time algorithm for global value numbering. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 212–227. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kapur, D.: Shostak’s congruence closure as completion. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 23–37. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Karr, M.: Affine relationships among variables of a program. In: Acta Informatica, pp. 133–151. Springer, Heidelberg (1976)Google Scholar
  11. 11.
    Kozen, D.: Partial automata and finitely generated congruences: an extension of Nerode’s theorem. In: Shore, R. (ed.) Proc. Conf. Logical Methods in Math. and Comp. Sci. (1992); Also Tech. Rep. PB-400, Comp. Sci. Dept., Aarhus Univ. (1992) Google Scholar
  12. 12.
    Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kaufmann, San Francisco (2000)Google Scholar
  13. 13.
    Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: 31st ACM Symposium on POPL, pp. 330–341. ACM, New York (2004)Google Scholar
  14. 14.
    Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)zbMATHCrossRefGoogle Scholar
  15. 15.
    Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure. Journal of the Association for Computing Machinery 27(2), 356–364 (1980)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: 22nd ACM Symposium on POPL, pp. 49–61. ACM, New York (1995)Google Scholar
  17. 17.
    Rodriguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic generation of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 280–295. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Rüthing, O., Knoop, J., Steffen, B.: Detecting equalities of variables: Combining efficiency with precision. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 232–247. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Vagvolgyi, S.: Intersection of finitely generated congruences over term algebra. Theoretical Computer Science 300, 209–234 (2003)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sumit Gulwani
    • 1
  • Ashish Tiwari
    • 2
  • George C. Necula
    • 1
  1. 1.University of CaliforniaBerkeley
  2. 2.SRI InternationalMenlo Park

Personalised recommendations