Symbolic Reachability Analysis of Higher-Order Context-Free Processes

  • Ahmed Bouajjani
  • Antoine Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3328)

Abstract

We consider the problem of symbolic reachability analysis of higher-order context-free processes. These models are generalizations of the context-free processes (also called BPA processes) where each process manipulates a data structure which can be seen as a nested stack of stacks. Our main result is that, for any higher-order context-free process, the set of all predecessors of a given regular set of configurations is regular and effectively constructible. This result generalizes the analogous result which is known for level 1 context-free processes. We show that this result holds also in the case of backward reachability analysis under a regular constraint on configurations. As a corollary, we obtain a symbolic model checking algorithm for the temporal logic E(U,X) with regular atomic predicates, i.e., the fragment of CTL restricted to the EU and EX modalities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded, lossy fifo channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of qdds. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 24–39. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxonomy. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 247–262. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Cachat, T.: Higher order pushdown automata, the caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Carayol, A., Wöhrle, S.: The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Caucal, D.: On the regular structure of prefix rewriting. TCS 106, 61–86 (1992)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Engelfriet, J.: Iterated pushdown automata and complexity classes. In: 15th STOC, pp. 365–373 (1983)Google Scholar
  14. 14.
    Esparza, J.: Grammars as processes. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 232–247. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithm for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Esparza, J., Knoop, J.: An automata-theoretic approach to interprocedural data-flow analysis. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 14–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Henriksen, J., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 424–435. Springer, Heidelberg (1997)Google Scholar
  19. 19.
    Knapik, T., Niwinski, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. TCS 37, 51–75 (1985)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Universität München (2002)Google Scholar
  22. 22.
    Walukiewicz, I.: Pushdown processes: Games and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 62–74. Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ahmed Bouajjani
    • 1
  • Antoine Meyer
    • 1
  1. 1.LiafaUniv. of Paris 7, Case 7014ParisFrance

Personalised recommendations