Advertisement

Improved Algorithm for Minimum Cost Range Assignment Problem for Linear Radio Networks

  • Gautam K. Das
  • Sasthi C. Ghosh
  • Subhas C. Nandy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3326)

Abstract

The unbounded version of the 1D range assignment problem for radio-stations is studied. Here a set of n radio stations are placed arbitrarily on a line. The objective is to assign ranges to these radio-stations such that the total power consumption is minimum. A simple incremental algorithm is proposed which produces optimum solution in O(n 3) time and O(n 2) space. This improves the running time of the best known existing algorithm by a factor of n.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassiouni, M.A., Fang, C.: Dynamic channel allocation for linear macrocellular topology. In: Proc. ACM Symp. on Applied Computing (SAC), pp. 382–388 (1998)Google Scholar
  2. 2.
    Chlamtac, I., Farago, A.: Making transmission schedules immune to topology changes in multihop packet radio networks. IEEE/ACM Trans. on Networking 2, 23–29 (1994)CrossRefGoogle Scholar
  3. 3.
    Clementi, A.E.F., Ferreira, A., Penna, P., Perennes, S., Silvestri, R.: The minimum range assignment problem on linear radio networks. Algorithmica 35, 95–110 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting in unknown radio networks. In: Proc. 11th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 861–870 (2000)Google Scholar
  5. 5.
    Clementi, A.E.F., Di Ianni, M., Silvestri, R.: The minimum broadcast range assignment problem on linear multi-hop wireless networks. Theoretical Computer Science 299, 751–761 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Clementi, A.E.F., Penna, P., Silvestri, R.: The power range assignment problem in radio networks on the plane. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 651–660. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Diks, K., Kranakis, E., Krizanc, D., Pelc, A.: The impact of knowledge on broadcasting time in radio networks. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 41–52. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Kranakis, E., Krizanc, D., Pelc, A.: Fault-tolerant broadcasting in radio networks (Extended abstract). In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 283–294. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Kirousis, L., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theoretical Computer Science 243, 289–305 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mathar, R., Mattfeldt, J.: Optimal transmission ranges for mobile communication in linear multihop packet radio networks. Wireless Networks 2, 329–342 (1996)CrossRefGoogle Scholar
  11. 11.
    Pahlavan, K., Levesque, A.: Wireless Information Networks. John Wiley, New York (1995)Google Scholar
  12. 12.
    Ulukus, S., Yates, R.D.: Stochastic power control for cellular radio systems. IEEE Trans. Communications 46, 784–798 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gautam K. Das
    • 1
  • Sasthi C. Ghosh
    • 1
  • Subhas C. Nandy
    • 1
  1. 1.Indian Statistical InstituteKolkataIndia

Personalised recommendations