Semantic Web Reasoning with Conceptual Logic Programs

  • Stijn Heymans
  • Davy Van Nieuwenborgh
  • Dirk Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3323)


We extend Answer Set Programming with, possibly infinite, open domains. Since this leads, in general, to undecidable reasoning, we restrict the syntax of programs, while carefully guarding useful knowledge representation mechanisms such as negation as failure and inequalities. Reasoning with the resulting Conceptual Logic Programs can be reduced to finite, normal Answer Set Programming, for which reasoners are available.

We argue that Conceptual Logic Programming is a useful tool for uniformly representing and reasoning with both ontologies and rules on the Semantic Web, as they can capture a large fragment of the OWL DL ontology language, while extending it in various aspects.


Logic Program Logic Programming Description Logic Concept Expression Disjunctive Logic Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Rule Markup Initiative,
  2. 2.
    Alsaç, G., Baral, C.: Reasoning in Description Logics using Declarative Logic Programming (2002),
  3. 3.
    Andréka, H., Németi, I., Van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. of Philosophical Logic 27(3), 217–274 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  5. 5.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004)Google Scholar
  6. 6.
    Van Belleghem, K., Denecker, M., De Schreye, D.: A Strong Correspondence between DLs and Open Logic Programming. In: Proc. of ICLP 1997, pp. 346–360 (1997)Google Scholar
  7. 7.
    Bry, F., Schaffert, S.: An Entailment Relation for Reasoning on the Web. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp. 17–34. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. J. of Intell. and Cooperative Information Systems 10, 227–252 (1998)Google Scholar
  9. 9.
    Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and Negation as Failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming with DLs for the Semantic Web. In: Proc. of KR 2004, pp. 141–151 (2004)Google Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    Gelfond, M., Przymusinska, H.: Reasoning in Open Domains. In: Logic Programming and Non-Monotonic Reasoning, pp. 397–413. MIT Press, Cambridge (1993)Google Scholar
  13. 13.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proc. of WWW 2003, pp. 48–57 (2003)Google Scholar
  14. 14.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Decidable Open Answer Set Programming. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2004)Google Scholar
  15. 15.
    Heymans, S., Vermeir, D.: Integrating Description Logics and Answer Set Programming. In: Bry, F., Henze, N., Małuszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 146–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Heymans, S., Vermeir, D.: Integrating Ontology Languages and Answer set Programming. In: Proc. of WebS 2003, pp. 584–588. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  17. 17.
    Horrocks, I., Patel-Schneider, P.F.: A Proposal for an OWL Rules Language. In: Proc. of the Thirteenth International World Wide Web Conference (WWW 2004). ACM, New York (2004)Google Scholar
  18. 18.
    Horrocks, I., Sattler, U.: Ontology Reasoning in the \({\mathcal SHOQ}\)(D) Description Logic. In: Proc. of IJCAI 2001, pp. 199–204. Morgan Kaufmann, San Francisco (2001)Google Scholar
  19. 19.
    Horrocks, I., Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule language Combining OWL and RuleML (May 2004)Google Scholar
  20. 20.
    Hustadt, U., Motik, B., Sattler, U.: Reducing \({\mathcal SHOQ}\)– Description Logic to Disjunctive Datalog Programs. FZI-Report 1-8-11/03, Forschungszentrum Informatik, FZI (2003)Google Scholar
  21. 21.
    Leone, N., Faber, W., Pfeifer, G.: DLV homepage,
  22. 22.
    Lifschitz, V.: Answer Set Programming and Plan Generation. AI 138(1-2), 39–54 (2002)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Motik, B., Volz, R., Maedche, A.: Optimizing Query Answering in Description Logics using disjunctive deductive databases. In: Proc. of KRDB 2003, pp. 39–50 (2003)Google Scholar
  24. 24.
    Rosati, R.: Towards Expressive KR Systems Integrating Datalog and Description Logics: Preliminary Report. In: Proc. of DL 1999, pp. 160–164 (1999)Google Scholar
  25. 25.
    Schlipf, J.: Some Remarks on Computability and Open Domain Semantics. In: Proc. of the Worksh. on Struct. Complexity and Recursion-Theoretic Methods in Log. Prog. (1993)Google Scholar
  26. 26.
    Schmidt-Schaub, M., Smolka, G.: Attributive Concept Descriptions with Complements. Artif. Intell. 48(1), 1–26 (1991)CrossRefGoogle Scholar
  27. 27.
    Simons, P.: Smodels homepage,
  28. 28.
    Swift, T.: Deduction in Ontologies via Answer Set Programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Tessaris, S.: Querying expressive DLs. In: Proc. of DL 2001 (2001)Google Scholar
  30. 30.
    Vardi, M.Y.: Why is Modal Logic so Robustly Decidable? Technical report (1997)Google Scholar
  31. 31.
    Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stijn Heymans
    • 1
  • Davy Van Nieuwenborgh
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUBBrusselsBelgium

Personalised recommendations