Well-Founded Semantics for Description Logic Programs in the Semantic Web

  • Thomas Eiter
  • Thomas Lukasiewicz
  • Roman Schindlauer
  • Hans Tompits
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3323)


In previous work, towards the integration of rules and ontologies in the Semantic Web, we have proposed a combination of logic programming under the answer set semantics with the description logics \({\cal SHIF}({\mathbf{D}})\) and \({\cal SHOIN}({\mathbf{D}})\), which underly the Web ontology languages OWL Lite and OWL DL, respectively. More precisely, we have introduced description logic programs (or dl-programs), which consist of a description logic knowledge base L and a finite set of description logic rules P, and we have defined their answer set semantics. In this paper, we continue this line of research. Here, as a central contribution, we present the well-founded semantics for dl-programs, and we analyze its semantic properties. In particular, we show that it generalizes the well-founded semantics for ordinary normal programs. Furthermore, we show that in the general case, the well-founded semantics of dl-programs is a partial model that approximates the answer set semantics, whereas in the positive and the stratified case, it is a total model that coincides with the answer set semantics. Finally, we also provide complexity results for dl-programs under the well-founded semantics.


Logic Program Logic Programming Description Logic Ground Atom Defeasible Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic programming. Tech. report, Computer Science and Engineering Dept., Arizona State University (2001)Google Scholar
  2. 2.
    Antoniou, G.: Nonmonotonic rule systems on top of ontology layers. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Antoniou, G., Wagner, G.: Rules and defeasible reasoning on the Semantic Web. In: Schröder, M., Wagner, G. (eds.) RuleML 2003. LNCS, vol. 2876, pp. 111–120. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems. J. Automated Reasoning 14, 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and nonmonotonic reasoning. J. Automated Reasoning 10(3), 399–420 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)Google Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: A markup language for Semantic Web rules. In: Proc. SWWS 2001, pp. 381–401 (2001)Google Scholar
  9. 9.
    Brewka, G.: On the relationship between defeasible logic and well-founded semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 121–132. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Damásio, C.V.: The W4 Project (2002), http://centria.di.fct.unl.pt/~cd/projectos/w4/index.htm
  11. 11.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  12. 12.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \({\mathcal AL}\)-log: Integrating datalog and description logics. Journal of Intelligent Information Systems (JIIS) 10(3), 227–252 (1998)CrossRefGoogle Scholar
  13. 13.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. In: Proc. KR 2004, pp. 141–151 (2004); Preliminary Report RR-1843-03-13, Institut für Informationssysteme, TU Wien (2003) Google Scholar
  14. 14.
    Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge (2002)Google Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases. New Generation Computing 17, 365–387 (1991)CrossRefGoogle Scholar
  16. 16.
    Grosof, B.N.: Courteous logic programs: Prioritized conflict handling for rules. IBM Research Report RC 20836, IBM Research Division, T.J. Watson Research (1997)Google Scholar
  17. 17.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logics. In: Proc. WWW 2003, pp. 48–57 (2003)Google Scholar
  18. 18.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL Rules Language. In: Proc. WWW 2004, pp. 723–731 (2004)Google Scholar
  21. 21.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \({\mathcal SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  22. 22.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  23. 23.
    Hufstadt, U., Motik, B., Sattler, U.: Reasoning for description logics around \({\mathcal SHIQ}\) in a resolution framework. Technical Report 3-8-04/04, FZI Karlsruhe (2004)Google Scholar
  24. 24.
    Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artif. Intell. 104(1-2), 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Maher, M.J., Governatori, G.: A semantic decomposition of defeasible logics. In: Proc. AAAI/IAAI 1999, pp. 299–305 (1999)Google Scholar
  26. 26.
    May, W., Ludäscher, B., Lausen, G.: Well-founded semantics for deductive object-oriented database languages. In: Bry, F., Ramakrishnan, R., Ramamohanarao, K. (eds.) DOOD 1997. LNCS, vol. 1341, pp. 320–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  27. 27.
    Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A system for answer set programming. In: Proc. NMR 2000 (2000)Google Scholar
  28. 28.
    Rao, P., Sagonas, K., Swift, T., Warren, D.S., Freire, J.: XSB: A system for efficiently computing WFS. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 430–440. Springer, Heidelberg (1997)Google Scholar
  29. 29.
    Rosati, R.: Towards expressive KR systems integrating datalog and description logics: Preliminary report. In: Proc. DL 1999, pp. 160–164 (1999)Google Scholar
  30. 30.
    Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH Aachen, Germany (2001)Google Scholar
  32. 32.
    Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between description logics and open logic programming. In: Proc. ICLP 1997, pp. 346–360 (1997)Google Scholar
  33. 33.
    Van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Proc. PODS 1989, pp. 1–10 (1989)Google Scholar
  34. 34.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MATHGoogle Scholar
  35. 35.
    W3C. OWL web ontology language overview, W3C Recommendation (February 10, 2004), Available at http://www.w3.org/TR/2004/REC-owl-features-20040210/

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Eiter
    • 1
  • Thomas Lukasiewicz
    • 1
    • 2
  • Roman Schindlauer
    • 1
  • Hans Tompits
    • 1
  1. 1.Institut für InformationssystemeTechnische Universität WienViennaAustria
  2. 2.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations