Advertisement

Hexagonal Pattern Languages

  • K. S. Dersanambika
  • K. Krithivasan
  • C. Martin-Vide
  • K. G. Subramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

Hexagonal tiling systems, hexagonal local picture languages and hexagonal recognizable picture languages are defined in this paper. Hexagonal Wang tiles and systems are also introduced. It is noticed that the family of hexagonal picture languages defined by hexagonal Wang systems coincides with the family of hexagonal picture languages recognized by hexagonal tiling system. Similar to hv-domino systems describing rectangular arrays, we define xyz-domino systems and characterize hexagonal picture languages using this. Unary hexagonal picture languages are also considered and we analyze some of their properties.

Keywords

Tiling System Hexagonal Array Letter Alphabet Rectangular Array Rational Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)zbMATHGoogle Scholar
  2. 2.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London (1974)zbMATHGoogle Scholar
  3. 3.
    Giammarresi, D., Restivo, A.: Two diamentional finite state recognizability. Fundamenta Informaticae 25(3,4), 399–422 (1966)MathSciNetGoogle Scholar
  4. 4.
    Giammarresi, D., Restivo, A.: Two-dimensional Languages. In: Salomaa, A., et al. (eds.) Hand book of Formal languages, vol. 3, pp. 215–269. Springer, Berlin (1997)Google Scholar
  5. 5.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory Languages and Computation. Addision-Wesley, Reading (1979)zbMATHGoogle Scholar
  6. 6.
    Latteux, M., Simplot, D.: Recognizable picture languages and domino tiling. Theoretical Computer Science 178, 275–283 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Mahajan, M., Krithivasan, K.: Hexagonal cellular automata. In: Narasimhan, R. (ed.) A erspective in Theoretical Computer Science. Series in Computer Science, vol. 16, pp. 134–164. World Scientific, Singapore (1989)Google Scholar
  8. 8.
    Prophaetis, L.D., Varricchio, S.: Recognizability of rectangular pictures by wang systems. Journel of Automata, Languages and Combinatorics 2(4), 269–288 (1997)Google Scholar
  9. 9.
    Salomaa, A.: Formal Languages. Academic Press, Inc., London (1973)zbMATHGoogle Scholar
  10. 10.
    Siromoney, G., Siromoney, R.: Hexagonal arrays and rectangular blocks. Computer Graphics and Image Processing 5, 353–381 (1976)CrossRefGoogle Scholar
  11. 11.
    Subramaniam, K.G.: Hexagonal array grammars. Computer Graphics and Image Processing 10(4), 388–394 (1979)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • K. S. Dersanambika
    • 1
  • K. Krithivasan
    • 1
  • C. Martin-Vide
    • 2
  • K. G. Subramanian
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology, MadrasChennaiIndia
  2. 2.Rovira I Virgili UniversityTarragonaSpain
  3. 3.Department of MathematicsMadras Christian CollegeChennaiIndia

Personalised recommendations