Advertisement

Binary Tomography by Iterating Linear Programs from Noisy Projections

  • Stefan Weber
  • Thomas Schüle
  • Joachim Hornegger
  • Christoph Schnörr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

In this paper we improve the behavior of a reconstruction algorithm for binary tomography in the presence of noise. This algorithm which has recently been published is derived from a primal-dual subgradient method leading to a sequence of linear programs. The objective function contains a smoothness prior that favors spatially homogeneous solutions and a concave functional gradually enforcing binary solutions. We complement the objective function with a term to cope with noisy projections and evaluate its performance.

Keywords

Discrete Tomography Combinatorial Optimization Linear Programming D.C. Programming Noise Suppression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuba, A., Herman, G.: Discrete tomography: A historical overview. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms, and Applications, pp. 3–34. Birkhäuser, Basel (1999)Google Scholar
  2. 2.
    Gardner, R., Gritzmann, P.: Discrete tomography: Determination of finite sets by x-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gritzmann, P., Prangenberg, D., de Vries, S., Wiegelmann, M.: Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography. Int. J. Imag. Syst. Technol. 9, 101–109 (1998)CrossRefGoogle Scholar
  4. 4.
    Herman, G., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Birkhäuser, Boston (1999)zbMATHGoogle Scholar
  5. 5.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fishburn, P., Schwander, P., Shepp, L., Vanderbei, R.: The discrete radon transform and its approximate inversion via linear programming. Discr. Appl. Math. 75, 39–61 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gritzmann, P., de Vries, S., Wiegelmann, M.: Approximating binary images from discrete x-rays. SIAM J. Optimization 11, 522–546 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. In: Proc. Int. Workshop on Combinatorial Image Analysis (IWCIA 2003), Palermo, Italy, May 14-16 (2003)Google Scholar
  9. 9.
    Weber, S., Schüle, T., Schnörr, C., Hornegger, J.: A linear programming approach to limited angle 3d reconstruction from dsa projections. Special Issue of Methods of Information in Medicine 4 (2004) (in press)Google Scholar
  10. 10.
    Weber, S., Schnörr, C., Schüle, T., Hornegger, J.: Binary tomography by iterating linear programs. Technical report 5/2004, University of Mannheim (2004)Google Scholar
  11. 11.
    Rockafellar, R.: Convex analysis, 2nd edn. Princeton Univ. Press, Princeton (1972)Google Scholar
  12. 12.
    Dinh, T.P., Elbernoussi, S.: Duality in d.c. (difference of convex functions) optimization subgradient methods. In: Trends in Mathematical Optimization. Int. Series of Numer. Math., vol. 84, pp. 277–293. Birkhäuser, Basel (1988)Google Scholar
  13. 13.
    Dinh, T.P., An, L.H.: A d.c. optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8, 476–505 (1998)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stefan Weber
    • 1
  • Thomas Schüle
    • 1
    • 3
  • Joachim Hornegger
    • 2
  • Christoph Schnörr
    • 1
  1. 1.Dept. M&CS, CVGPR-GroupUniversity of MannheimMannheimGermany
  2. 2.Erlangen-Nürnberg Dept. CSFriedrich-Alexander UniversityErlangenGermany
  3. 3.Siemens Medical SolutionsForchheimGermany

Personalised recommendations