Advertisement

Curve Tracking by Hypothesis Propagation and Voting-Based Verification

  • Kazuhiko Kawamoto
  • Kaoru Hirota
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3322)

Abstract

We propose a robust and efficient algorithm for curve tracking in a sequence of binary images. First it verifies the presence of a curve by votes, whose values indicate the number of the points on the curve, thus being able to robustly detect curves against outlier and occlusion. Furthermore, we introduce a procedure for preventing redundant verification by determining equivalence curves in the digital space to reduce the time complexity. Second it propagates the distribution which represents the presence of the curve to the successive image of a given sequence. This temporal propagation enables to focus on the potential region where the curves detected at time t – 1 are likely to appear at time t. As a result, the time complexity does not depend on the dimension of the curve to be detected. To evaluate the performance, we use three noisy image sequences, consisting of 90 frames with 320 × 240 pixels. The results shows that the algorithm successfully tracks the target even in noisy or cluttered binary images.

Keywords

Binary Image Hypothesis Propagation Equivalence Curve Sequential Monte Carlo Curve Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Comm. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  2. 2.
    Fischer, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Princen, J.P., Illingworth, J., Kittler, J.V.: A Formal Definition of the Hough Transform: Properties and Relationships. J. Mathematical Imaging and Vision 1, 153–168 (1992)CrossRefGoogle Scholar
  4. 4.
    A Linear Algorithm for Incremental Digital Display of Circular Arcs. Comm. ACM 20(2), 100–106 (1977)Google Scholar
  5. 5.
    Xu, L., Oja, E.: Randomized Hough Transform: Basic Mechanisms, Algorithms, and Computational Complexities. CVGIP: Image Understanding 57(2), 131–154 (1993)CrossRefGoogle Scholar
  6. 6.
    Bergen, J.R., Shvaytser, H.: Probabilistic Algorithm for Computing Hough Transform. Journal of Algorithms 12(4), 639–656 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kiryati, N., Eldar, Y., Bruckstein, M.: A Probabilistic Hough Transform. Pattern Recognition 24(4), 303–316 (1991)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chum, O., Matas, J.: Randomized RANSAC with T d,d test. In: Proc. the British Machine Vision Conference, vol. 2, pp. 448–457 (2002)Google Scholar
  9. 9.
    Rosenfeld, A., Ornelas Jr., J., Hung, Y.: Hough Transform Algorithms for Mesh-Connected SIMD Parallel Processors. Computer Vision, Graphics, and Image Processing 41(3), 293–305 (1988)CrossRefGoogle Scholar
  10. 10.
    Li, H., Lavin, M.A., Master, R.L.: Fast Hough transform: a hierarchical approach. Computer Vision, Graphics, and Image Processing 36, 139–161 (1986)CrossRefGoogle Scholar
  11. 11.
    Illingworth, J., Kittler, J.: The adaptive Hough transform. IEEE Trans. Pattern Analysis and Machine Intelligence 9(5), 690–698 (1987)CrossRefGoogle Scholar
  12. 12.
    Torr, P.H.S., Davidson, C.: IMPSAC: synthesis of importance sampling and random sample consensus. IEEE Trans. Pattern Analysis and Machine Intelligence 25(3), 354–364Google Scholar
  13. 13.
    Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamic systems. J. the American Statistical Association 93, 1033–1044 (1998)Google Scholar
  14. 14.
    Doucet, A., Godill, S., Andrieu, C.: On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing 10(3), 197–208 (2000)CrossRefGoogle Scholar
  15. 15.
    Doucet, A., de Freitas, N., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)MATHGoogle Scholar
  16. 16.
    Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc.–F 140(2), 107–113 (1993)Google Scholar
  17. 17.
    Isard, M., Black, A.: Condensation – Conditional density propagation for visual tracking. Int. J. Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  18. 18.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans. Signal Processing 50(2), 174–188Google Scholar
  19. 19.
    Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kazuhiko Kawamoto
    • 1
  • Kaoru Hirota
    • 1
  1. 1.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations