Argumentation Neural Networks

  • Artur d’Avila Garcez
  • Dov Gabbay
  • Luís C. Lamb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of legal and argumentative reasoning. In this paper, we present a new hybrid model of computation that allows for the deduction and learning of argumentative reasoning. We propose a Neural Argumentation Algorithm to translate argumentation networks into standard neural networks, and prove correspondence between the semantics of the two networks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. Journal of Logic and Computation 13, 429–448 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bondarenko, A., Dung, P., Kowalski, R., Toni, F.: An abstract, argumentation theoretic approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Neural-Symbolic Learning Systems: Foundations and Applications. Springer, Heidelberg (2002)MATHGoogle Scholar
  4. 4.
    d’Avila Garcez, A.S., Lamb, L.C.: Reasoning about time and knowledge in neural-symbolic learning systems. In: Thrun, S., Saul, L., Schoelkopf, B. (eds.) Advances in Neural Information Processing Systems 16, Proc. of NIPS 2003, Vancouver, Canada, pp. 921–928. MIT Press, Cambridge (2004)Google Scholar
  5. 5.
    Gabbay, D.M., Woods, J.: The law of evidence and labelled deduction: A position paper. Phi News, 4 (October 2003)Google Scholar
  6. 6.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  7. 7.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)MATHGoogle Scholar
  8. 8.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Artur d’Avila Garcez
    • 1
  • Dov Gabbay
    • 2
  • Luís C. Lamb
    • 3
  1. 1.Dept. of ComputingCity University LondonUK
  2. 2.Dept. of Computer ScienceKing’s College LondonUK
  3. 3.Institute of InformaticsUFRGSPorto AlegreBrazil

Personalised recommendations