Influence of Dendritic Spine Morphology on Spatiotemporal Change of Calcium/Calmoduline-Dependent Protein Kinase Density

  • Shuichi Kato
  • Seiichi Sakatani
  • Akira Hirose
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

Glutamic acid sensitivity of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor at spine is an important factor that determines excitatory synaptic weight. It has been suggested that the weight is determined by spine morphology. It was also reported that the thick spines (mushroom type) whose head is fully developed remain mostly stable. Therefore, the memory in the cerebral neuronal circuit is possibly stored in the spine morphology. However, it is still unclear how glutamic acid sensitivity varies with the change in spine morphology. In this paper, we show the relation between the spine morphology and the glutamic acid sensitivity. We classify the spines into 3 types (mushroom, thin and stubby) according to physiological observation. We analyze the spatiotemporal dynamics of CaMKII-CaMCa4 concentration, that increases the glutamic acid sensitivity, when calcium ions are injected at the spine head. We find that CaMKII-CaMCa4 concentration in the mushroom-type spine is much higher than those in the others and that its decay is much slower. This result is the first finding that shows the relation between the change in the spine morphology and the glutamic acid sensitivity, which connects synaptic characteristics that determines the brain functions and the spine morphology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harris, K.M., et al. (eds.): Intrinsic Determinants of Neuronal From and Function, pp. 179–199. Alan Liss, New York (1988)Google Scholar
  2. 2.
    Harris, K.M., Stevens, J.K.: J. Neurosci.  9, 4455–4469 (1989)Google Scholar
  3. 3.
    Denk, W., Strickler, J.H., Webb, W.W.: Science.  248, 73–6 (1990)Google Scholar
  4. 4.
    Yuste, R., Denk, W.: Nature.  375, 682–4 (1995)Google Scholar
  5. 5.
    Harris, K.M., Jensen, F.E., Tsao, B.: J. Neurosci.  12, 2685–2705 (1992)Google Scholar
  6. 6.
    Woolley, C.S., et al.: J. Neurosci.  10, 4035–4039 (1990)Google Scholar
  7. 7.
    Trachtenberg, J.T., et al.: Nature.  420, 788–94 (2002)Google Scholar
  8. 8.
    Grutzendler, J., Kasthuri, N., Gan, W.-B.: Nature.  420, 812–816 (2002)Google Scholar
  9. 9.
    Van Harrefeld, A., Fidková, E.: Exp. Neurol.  49, 736–749 (1975)Google Scholar
  10. 10.
    Lee, K.S., et al.: J. Neurophysiol.  44, 247–258 (1980)Google Scholar
  11. 11.
    Greenough, W.T., et al. (eds.): Synaptic Plasticity, pp. 335–372. Guilford Press, New York (1985)Google Scholar
  12. 12.
    Desmond, N.L., Levy, W.B.: Synapse.  5, 39–43 (1990)Google Scholar
  13. 13.
    Carverly, R.K.S., Jones, D.G.: Brain Res. Rev.  15, 215–249 (1990)Google Scholar
  14. 14.
    Purpura, D.P.: Science.  186, 1126–8 (1974)Google Scholar
  15. 15.
    Svoboda, K., Tank, D.W., Denk, W.: Science.  272, 716–719 (1996)Google Scholar
  16. 16.
    Shepherd, G.M.: J. Neurohysiol.  75, 2197–2210 (1996)Google Scholar
  17. 17.
    Matsuzaki, M., et al.: Nature Neurosci.  4, 1086–1092 (2001)Google Scholar
  18. 18.
    Ascher, P., Nowak, L.: J. Physiol.  399, 247–266 (1988)Google Scholar
  19. 19.
    Jahr, C., Stevens, C.: J. Neurosci.  10, 1830–1837 (1990)Google Scholar
  20. 20.
    Nishizaki, T., et al.: Biochem. Biophy. Res. Commun.  254, 446–449 (1999)Google Scholar
  21. 21.
    Stevens, C.F., et al.: Curr. Biol.  4, 687–693 (1994)Google Scholar
  22. 22.
    Lledo, P.M., et al.: Proc. Natl. Acad. Sci. USA.  92, 11175–11179 (1995)Google Scholar
  23. 23.
    Barria, A., et al.: Science.  276, 2042–2045 (1997)Google Scholar
  24. 24.
    Yamaguchi, I., Ichikawa, K.: Neurosci. Res.  30, 91–98 (1998)Google Scholar
  25. 25.
    Zhou, A., Neher, E.: J. Physiol.  480, 123–136 (1993)Google Scholar
  26. 26.
    Koch, C.: Biophysics of Computaion. Oxford University Press, New York (1999)Google Scholar
  27. 27.
    Holmes, W.R.: J. Comput. Neurosci 8, 65–85 (2000)Google Scholar
  28. 28.
    Coomber, C.J.: Neural Comput.  10, 1653–1678 (1998)Google Scholar
  29. 29.
    Shen, K., Meyer, T.: Science.  284, 162–167 (1999)Google Scholar
  30. 30.
    Fukazawa, Y., et al.: Neuron.  38, 447–460 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shuichi Kato
    • 1
  • Seiichi Sakatani
    • 1
    • 2
  • Akira Hirose
    • 1
  1. 1.Department of Frontier InformaticsGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
  2. 2.Japan Society for the Promotion of Science 

Personalised recommendations