TermitAnt: An Ant Clustering Algorithm Improved by Ideas from Termite Colonies

  • Vahid Sherafat
  • Leandro Nunes de Castro
  • Eduardo R. Hruschka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)


This paper proposes a heuristic to improve the convergence speed of the standard ant clustering algorithm. The heuristic is based on the behavior of termites that, when building their nests, add some pheromone to the objects they carry. In this context, pheromone allows artificial ants to get more information, at the local level, about the work in progress at the global level. A sensitivity analysis of the algorithm is performed in relation to the proposed modification on a benchmark problem, leading to interesting results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence from Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  2. 2.
    Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  3. 3.
    Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The Dynamics of Collective Sorting: Robot-Like Ant and Ant-Like Robot. In: Meyer, J.A., Wilson, S.W. (eds.) Simulation of Adaptive Behavior: From Animals to Animats, pp. 356–365. MIT Press/Bradford Books, Cambridge (1991)Google Scholar
  4. 4.
    Dorigo, M.: Optimization, Learning and Natural Algorithms (in Italian), Ph.D. Thesis, Dipartimento di Elettronica, Politecnico di Milano, IT (1992)Google Scholar
  5. 5.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  6. 6.
    Kube, C.R., Parker, C.A.C., Wang, T., Zhang, H.: Biologically Inspired Collective Robotics. In: de Castro, L.N., Von Zuben, F.J. (eds.) Recent Developments in Biologically In-spired Computing, ch. 15, Idea Group Inc., USA (2004)Google Scholar
  7. 7.
    Lumer, E.D., Faieta, B.: Diversity and Adaptation in Populations of Clustering Ants. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S.W. (eds.) Proc. of the 3rd Int. Conf. on the Simulation of Adaptive Behavior: From Animals to Animats, vol. 3, pp. 499–508. MIT Press, Cambridge (1994)Google Scholar
  8. 8.
    Resnick, M.: Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press, Cambridge (1994)Google Scholar
  9. 9.
    Ramos, V., Muge, F., Pina, P.: Self-Organized Data and Image Retrieval as a Consequence of Inter-Dynamic Synergistic Relationships in Artificial Ant Colonies. In: Ruiz-del-Solar, J., Abrahan, A., Köppen, M. (eds.) Soft-Computing Systems - Design, Management and Applications, Frontiers in Artificial Intelligence and Applications, vol. 87, pp. 500–509. IOS Press, Amsterdam (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vahid Sherafat
    • 1
  • Leandro Nunes de Castro
    • 2
  • Eduardo R. Hruschka
    • 2
  1. 1.State University of Campinas (Unicamp) 
  2. 2.Catholic University of Santos (UniSantos) 

Personalised recommendations