Classification of SAR Images Through a Convex Hull Region Oriented Approach

  • Simith T. D’Oliveira Junior
  • Francisco de A.T. de Carvalho
  • Renata M. C. R. de Souza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

This paper presents a new symbolic classifier based on a region oriented approach. Concerning the learning step, each class is described by a region (or a set of regions) in Rp defined by the convex hull of the objects belonging to this class. In the allocation step, the assignment of a new object to a class is based on a dissimilarity matching function which compares the class description (a region or a set of regions) with a point in Rp. To show the usefulness of this approach, experiments with simulated SAR images were considered. The evaluation of the proposed classifier is based on the prediction accuracy and it is achieved in the framework of a Monte Carlo experience.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    De Carvalho, F.A.T., Anselmo, C.A.F., Souza, R.M.C.R.: Symbolic approach to classify large data sets. In: Kiers, H.A.L., et al. (eds.) Data Analysis, Classification, and Related Methods, pp. 375–380. Springer, Heidelberg (2000)Google Scholar
  3. 3.
    Frery, A.C., Mueler, H.J., Yanasse, C.C.F., Sant’ana, S.J.S.: A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing 1, 648–659 (1997)CrossRefGoogle Scholar
  4. 4.
    Ichino, M., Yaguchi, H., Diday, E.: A fuzzy symbolic pattern classifier. In: Diday, E., et al. (eds.) Ordinal and Symbolic Data Analysis, pp. 92–102. Springer, Berlin (1996)Google Scholar
  5. 5.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall International Editions, Englewood Cliffs (1988)Google Scholar
  6. 6.
    Lee, J.S.: Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing 17, 24–32 (1981)CrossRefGoogle Scholar
  7. 7.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  8. 8.
    Souza, R.M.C.R., De Carvalho, F.A.T., Frery, A.C.: Symbolic approach to SAR image classification. In: IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburgo, pp. 1318–1320 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simith T. D’Oliveira Junior
    • 1
  • Francisco de A.T. de Carvalho
    • 1
  • Renata M. C. R. de Souza
    • 1
  1. 1.Centro de Informatica – CIn / UFPERecifeBrasil

Personalised recommendations