Fast Half Pixel Motion Estimation Based on Spatio-temporal Correlations

  • HyoSun Yoon
  • GueeSang Lee
  • SooHyung Kim
  • Deokjai Choi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3316)

Abstract

A fast half pixel motion estimation algorithm based on spatio-temporal correlations is proposed to reduce the computational complexity. According to spatially and temporally correlated information, the proposed method decides whether half pixel motion estimation is skipped or not for the current block. Experimental results show that the proposed method outperforms most of current methods in computational complexity by reducing the number of search points with little degradation in image quality. When compared to full half pixel search method, the proposed algorithm achieves the search point reduction up to 95% with only 0.01 ~ 0.06 (dB) degradation of image quality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tham, J.Y., Ranganath, S., Kassim, A.A.: A Novel Unrestricted Center-Biased Diamond Search Algorithm for Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology 8(4), 369–375 (1998)CrossRefGoogle Scholar
  2. 2.
    Shan, Z., Kai-kuang, M.: A New Diamond Search Algorithm for Fast block Matching Motion Estimation. IEEE Transactions on Image Processing 9(2), 287–290 (2000)CrossRefGoogle Scholar
  3. 3.
    Koga, T., Iinuma, K., Hirano, Y., Iijim, Y., Ishiguro, T.: Motion compensated interframe coding for video conference. In: Proc. NTC 1981, pp. C9.6.1–9.6.5 (1981)Google Scholar
  4. 4.
    Renxiang, L., Bing, Z., Liou, M.L.: A New Three Step Search Algorithm for Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology 4(4), 438–442 (1994)CrossRefGoogle Scholar
  5. 5.
    Lai-Man, P., Wing-Chung, M.: A Novel Four-Step Search Algorithm for Fast Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology 6(3), 313–317 (1996)CrossRefGoogle Scholar
  6. 6.
    Yuk-Ying, C., Neil, W.B.: Fast search block-matching motion estimation algorithm using FPGA. In: Visual Communication and Image Processing 2000. Proc. SPIE, vol. 4067, pp. 913–922 (2000)Google Scholar
  7. 7.
    Jain, J., Jain, A.: Dispalcement measurement and its application in interframe image coding. IEEE Transactions on Communications COM-29, 1799–1808 (1981)Google Scholar
  8. 8.
    Zhu, C., Lin, X., Chau, L.P.: Hexagon based Search Pattern for Fast Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology 12(5), 349–355 (2002)CrossRefGoogle Scholar
  9. 9.
    Ma, K.K., Hosur, P.I.: Report on Performance of Fast Motion using Motion Vector Field Adaptive Search Technique. ISO/IEC/JTC1/SC29/WG11.M5453 (1999)Google Scholar
  10. 10.
    Tourapis, A.M., Liou, M.L.: Fast Block Matching Motion Estimation using Predictive Motion Vector Field Adaptive Search Technique. ISO/IEC/JTC1/SC29/WG11, M5866 (2000)Google Scholar
  11. 11.
    Lee, K.H., Choi, J.H., Lee, B.K.: Fast two step half pixel accuracy motion vector prediction. Electronics Letters 36(7), 625–627 (2000)CrossRefGoogle Scholar
  12. 12.
    Cheng, D., Yun, H., Junli, Z.: A Prabolic Prediction-Based, Fast Half Pixel Serch Algorithm for Very Low Bit-Rate Moving Picture Coding. IEEE Transactions on Circuits and Systems for Video Technology 13(6), 514–518 (2003)CrossRefGoogle Scholar
  13. 13.
    Cheng, D., Yun, H.: A Comparative Study of Motion Estimation for Low Bit Rate Video Coding. SPIE 4067(3), 1239–1249 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • HyoSun Yoon
    • 1
  • GueeSang Lee
    • 1
  • SooHyung Kim
    • 1
  • Deokjai Choi
    • 1
  1. 1.Department of Computer ScienceChonnam National UniversityKwangjuKorea

Personalised recommendations