Advertisement

Verification of Analog and Mixed-Signal Circuits Using Hybrid System Techniques

  • Thao Dang
  • Alexandre Donzé
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3312)

Abstract

In this paper we demonstrate a potential extension of formal verification methodology in order to deal with time-domain properties of analog and mixed-signal circuits whose dynamic behavior is described by differential algebraic equations. To model and analyze such circuits under all possible input signals and all values of parameters, we build upon two techniques developed in the context of hybrid (discrete-continuous) control systems. First, we extend our algorithm for approximating sets of reachable sets for dense-time continuous systems to deal with differential algebraic equations (DAEs) and apply it to a biquad low-pass filter. To analyze more complex circuits, we resort to bounded horizon verification. We use optimal control techniques to check whether a Δ-Σ modulator, modeled as a discrete-time hybrid automaton, admits an input sequence of bounded length that drives it to saturation.

Keywords

Input Signal Hybrid System Analog Circuit Hybrid Automaton Reachability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Pappas, G.J. (eds.): HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  3. 3.
    Asarin, E., Dang, T.: Abstraction by projection. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Bournez, O., Dang, T., Maler, O.: Reachability analysis of piecewiselinear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Ascher, U.M., Petzold, L.R.: Stability of computational methods for constrained dynamics systems. SIAM Journal on Scientific Computing 14, 95–120 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35, 407–427 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Brenan, K.E., Campell, S.L., Petzold, L.R.: Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. North Holland, Amsterdam (1989)Google Scholar
  10. 10.
    Chutinan, A., Krogh, B.H.: Verification of polyhedral invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Lubich, C., Hairer, E., Wanner, G.: Geometric Numerical Integration. In: Structure-Preserving Algorithms for Ordinary Differential Equations. Series in Comput. Mathematics, vol. 31. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Pérez-Verdú, B., Medeiro, F., Rodríguez-Vázquez, A.: Top-Down Design of High-Performance Sigma-Delta Modulators, ch. 2. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  13. 13.
    Feldmann, U., Günther, M.: The DAE-index in electric circuit simulation. In: Proc. IMACS, Symposium on Mathematical Modelling, vol. 4, pp. 695–702 (1994)Google Scholar
  14. 14.
    Floberg, H.: Symbolic Analysis in Analog Integrated Circuit Design. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  15. 15.
    Ghosh, A., Verumi, R.: Formal verification of synthesized analog circuits. Int. Conf. on Computer Design 4, 40–45 (1999)Google Scholar
  16. 16.
    Goodson, M., Schreier, R., Zhang, B.: An algorithm for computing convex positively invariant sets for delta-sigma modulators. IEEE Transactions on Circuits and Systems I 44, 38–44 (1997)CrossRefGoogle Scholar
  17. 17.
    Tomlin, C.J., Greenstreet, M.R. (eds.): HSCC 2002. LNCS, vol. 2289. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog designs. In: Proc. ICCAD (2004) (to appear)Google Scholar
  19. 19.
    Hartong, W., Hedrich, L., Barke, E.: On discrete modelling and model checking for nonlinear analog systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 401–413. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Hein, S., Zakhor, A.: On the stability of sigma delta modulators. IEEE Transactions on Signal Processing 41 (1993)Google Scholar
  21. 21.
    Kouramas, K., Rakovic, S.V., Kerrigan, E.C., Mayne, D.Q.: Approximation of the minimal robustly positively invariant set for discrete-time LTI systems with persistent state disturbances. In: 42nd IEEE Conference on Decision and Control (2003)Google Scholar
  22. 22.
    Kurshan, R.P., McMillan, K.L.: Analysis of digital circuits through symbolic reduction. IEEE Trans. on Computer-Aided Design 10, 1350–1371 (1991)Google Scholar
  23. 23.
    Maler, O.: On optimal and sub-optimal control in the presence of adversaries. In: Workshop on Discrete Event Systems, (WODES) (2004) (to appear)Google Scholar
  24. 24.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Proc. FORMATS/FTRTFT (2004) (to appear)Google Scholar
  25. 25.
    Maler, O., Pnueli, A. (eds.): HSCC 2003. LNCS, vol. 2623. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  26. 26.
    MOSEK ApS. The Mosek Optimization Toolbox for Matlab version 3.0 (revision 19) user’s guide and reference manual (November 2003)Google Scholar
  27. 27.
    Salem, A.: Semi-formal verification of VHDL-AMS descriptors. IEEE Int Symposium on Circuits and Systems 5, V-333–V336 (2002)Google Scholar
  28. 28.
    Schreier, R.: The delta-sigma toolbox version 6.0 (January 2003)Google Scholar
  29. 29.
    Sorensen, H.V., Aziz, P.M., Spiegel, J.V.D.: An overview of sigma-delta converters. IEEE Signal Processing Magazine, 61–84 (January 1996)Google Scholar
  30. 30.
    Varaiya, P.: Reach set computation using optimal control. In: Proc. KIT Workshop, Verimag, Grenoble (1998)Google Scholar
  31. 31.
    Wichmann, T.: Computer aided generation of approximate DAE systems for symbolic analog circuit design. In: Proc. Annual Meeting GAMM (2000)Google Scholar
  32. 32.
    Wichmann, T., Popp, R., Hartong, W., Hedrich, L.: On the simplification of nonlinear DAE systems in analog circuit design. In: Computer Algebra in Scientific Computing. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thao Dang
    • 1
  • Alexandre Donzé
    • 1
  • Oded Maler
    • 1
  1. 1.VERIMAG, Centre EquationGièresFrance

Personalised recommendations