Cellular Automata in the Hyperbolic Plane: Proposal for a New Environment

  • Kamel Chelghoum
  • Maurice Margenstern
  • Benoît Martin
  • Isabelle Pecci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3305)

Abstract

In this paper, we deal with new environment to visualise and to interact with cellular automata implemented in a grid of the hyperbolic plane. We use two kinds of tiling: the ternary heptagrid and the rectangular pentagrid. We show that both grids have the same spanning tree: the same numbering with maximal Fibonacci numbers can be used to identify all tiles. We give all the materials to compute the neighbourhood of any tile in the heptagrid or in the pentagrid. Then we propose visualisation and interaction techniques to interact with cellular automata which are grounded in these two grids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Initialising Cellular Automata in the Hyperbolic Plane. IEICE Transactions on Information and Systems. Special Section on Cellular Automata E87-D(3), 677–686 (2004)Google Scholar
  2. 2.
    Chelghoum, K., Margenstern, M., Martin, B., Pecci, I.: Tools for implementing cellular automata in grid {7,3} of the hyperbolic plane. In: DMCS, Turku (July 2004)Google Scholar
  3. 3.
    Margenstern, M.: New tools for Cellular Automata in the Hyperbolic Plane. Journal of Universal Computer Science 6(12), 1226–1252 (2000)MATHMathSciNetGoogle Scholar
  4. 4.
    Margenstern, M., Morita, K.: NP-problems are tractable in the space of cellular automata in the hyperbolic plane. Theoretical Computer Science 259, 99–128 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Margenstern, M.: Cellular Automata and Combinatoric Tilings in Hyperbolic Spaces, a survey. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 48–72. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Martin, B.: TrackMouse: a 4D solution for interacting with two cursors. Accepted in IHM 2004, Namur, Belgique (September 2004)Google Scholar
  7. 7.
    Meschkowski, H.: Non-Euclidean geometry, translated by A. Shenitzer. Academic Press, New-York (1964)Google Scholar
  8. 8.
    Ramsey, A., Richtmyer, R.D.: Introduction to hyperbolic geometry. Springer, Berlin (1995)Google Scholar
  9. 9.
    Worsch, T.: Simulations Between Cellular Automata on Trees Extended by Horizontal Edges. Fundamenta Informaticae 58(3), 241–260 (2004)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kamel Chelghoum
    • 1
  • Maurice Margenstern
    • 1
  • Benoît Martin
    • 1
  • Isabelle Pecci
    • 1
  1. 1.LITAUniversity of MetzMetz, Cedex 01France

Personalised recommendations