Chaos in a Simple Cellular Automaton Model of a Uniform Society

  • Franco Bagnoli
  • Fabio Franci
  • Raúl Rechtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3305)


In this work we study the collective behavior in a model of a simplified homogeneous society. Each agent is modeled as a binary “perceptron”, receiving neighbors’ opinions as inputs and outputting one of two possible opinions, according to the conformist attitude and to the external pressure of mass media. For a neighborhood size greater than three, the system shows a very complex phase diagram, including a disordered phase and chaotic behavior. We present analytic calculations, mean fields approximation and numerical simulations for different values of the parameters.


Lyapunov Exponent Cellular Automaton Cellular Neural Network Cellular Automaton Model Transient Chaos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H.: Synergetics. An Introduction. Springer, Heidelberg (1983); Advanced Synergetics. Springer, Heidelberg (1983)Google Scholar
  2. 2.
    Weidlich, W., Haag, G.: Concepts and Methods of a Quantitative Sociology: The Dynamics of Interacting Populations. Springer, Berlin (1983)Google Scholar
  3. 3.
    Dendrinos, D.S., Sonis, M.: Chaos and Socio-spatial Dynamics. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  4. 4.
    Weidlich, W.: Physics and Social Science - The Approach of Synergetics. Physics Reports 204, 1–163 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Vallacher, R., Nowak, A. (eds.): Dynamical Systems in Social Psychology. Academic Press, New York (1994)Google Scholar
  6. 6.
    Cowan, G.A., Pines, D., Meltzer, D. (eds.): Complexity. Metaphors, Models, and Reality. Addison-Wesley, Santa Fe (1994)zbMATHGoogle Scholar
  7. 7.
    Gilbert, N., Doran, J. (eds.): Simulating societies: The computer simulation of social processes. University College, London (1994)Google Scholar
  8. 8.
    Helbing, D.: Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes. Kluwer Academic, Dordrecht (1995)zbMATHGoogle Scholar
  9. 9.
    Hegselmann, R.H., Mueller, U., Troitzsch, K.G. (eds.): Modeling and simulation in the social sciences from the philosophy of science point of view. Kluwer, Dordrecht (1996)Google Scholar
  10. 10.
    Mantegna, R.N., Stanley, H.E.: An introduction to econophysics. Correlations and complexity in finance. Cambridge University Press, New York (2000)Google Scholar
  11. 11.
    Stauffer, D., Sornette, D.: Physica A 271, 496 (1999)CrossRefGoogle Scholar
  12. 12.
    Lorenz, H.W.: Nonlinear Dynamical Equations and Chaotic Economy. Springer, Berlin (1993)Google Scholar
  13. 13.
    Holyst, J.A., Kacperski, K., Schweitzer, F.: Physica A 285, 199 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bagnoli, F., Berrones, A., Franci, F.: Physica A 332, 509–518 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Bagnoli, F., Boccara, N., Rechtman, R.: Phys. Rev. E 63, 46116 (2001)Google Scholar
  16. 16.
    Bagnoli, F., Franci, F., Rechtman, R.: In: Bandini, S., Chopard, B., Tomassini, M. (eds.) Cellular Automata, p. 249. Springer, Berlin (2002)Google Scholar
  17. 17.
    Bagnoli, F., Franci, F., Rechtman, R.: (in preparation)Google Scholar
  18. 18.
    Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circ. Syst. CAS-35, 1257–1272 (1988)Google Scholar
  19. 19.
    Chua, L.O., Roska, T.: The CNN Paradigm. IEEE Trans. Circ. Syst. CASI-40, 147–156 (1993)Google Scholar
  20. 20.
    Harrer, H., Nossek, J.A.: Discrete-time Cellular Neural Networks. Int. J. of Circ. Th. Appl. 20, 453–467 (1992)zbMATHCrossRefGoogle Scholar
  21. 21.
    Tel, T.: In: Bai-lin, H. (ed.) Proceedings of the 19th IUPAP International Conference on Statistical Physics. World Scientific Publishing, Singapore (1996)Google Scholar
  22. 22.
    Bagnoli, F., Rechtman, R.: Phys. Rev. E 59, R1307 (1999); Bagnoli, F., Cecconi, F.: Phys. Lett. A 260, 9–17 (2001); references thereinGoogle Scholar
  23. 23.
    Crutchfield, J.P., Kaneko, K.: Phys. Rev. Lett. 60, 2715 (1988); Kaneko, K.: Phys. Lett. 149A, 105 (1990)Google Scholar
  24. 24.
    Politi, A., Livi, R., Oppo, G.-L., Kapral, R.: Europhys. Lett. 22, 571 (1993)CrossRefGoogle Scholar
  25. 25.
    Grassberger, P.: J. Stat. Phys. 79, 13 (1995)zbMATHCrossRefGoogle Scholar
  26. 26.
    Bagnoli, F.: J. Stat. Phys. 79, 151 (1996)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hinrichsen, H., Weitz, J.S., Domany, E.: J. Stat. Phys. 88, 617–636 (1997)zbMATHCrossRefGoogle Scholar
  28. 28.
    Bagnoli, F., Rechtman, R., Ruffo, S.: Phys. Lett. A 172, 34 (1992)CrossRefGoogle Scholar
  29. 29.
    Luque, B., Solé, R.V.: Physica A 284, 33–45 (2000)CrossRefGoogle Scholar
  30. 30.
    Bagnoli, F., Rechtman, R.: Phys. Rev. E 59, R1307 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Franco Bagnoli
    • 1
    • 2
    • 4
    • 5
  • Fabio Franci
    • 2
    • 4
  • Raúl Rechtman
    • 3
  1. 1.Dipartimento di EnergeticaUniversità di FirenzeFirenzeItaly
  2. 2.Centro Interdipartimentale per lo Studio delle Dinamiche ComplesseUniversità di FirenzeItaly
  3. 3.Centro de Investigacíon en Energía, UNAMTemixcoMexico
  4. 4.INFM, Sezione di Firenze 
  5. 5.INFN, Sezione di Firenze 

Personalised recommendations