Cell-Oriented Modeling of In Vitro Capillary Development
- 28 Citations
- 2.6k Downloads
Abstract
We introduce a Cellular Potts model (a cellular-automaton-based Monte-Carlo model) of in vitro capillary development, or angiogenesis. Our model derives from a recent continuum model, which assumes that vascular endothelial cells chemotactically attract each other. Our discrete model is “cell based.” Modeling the cells individually allows us to assign different physicochemical properties to each cell and to study how these properties affect the vascular pattern. Using the model, we assess the roles of intercellular adhesion, cell shape and chemoattractant saturation in in vitro capillary development. We discuss how our computational model can serve as a tool for experimental biologists to “pre-test” hypotheses and to suggest new experiments.
Keywords
Cell Elongation Dictyostelium Discoideum Monte Carlo Step Local Connectivity Human Umbilical Vascular Endothelial CellPreview
Unable to display preview. Download preview PDF.
References
- 1.Dougherty, E.R., Lotufo, R.A.: Hands-on Morphological Image Processing. Tutorial Texts in Optical Engin., vol. TT59. SPIE Press, Bellingham (2003)Google Scholar
- 2.Segura, I., Serrano, A., De Buitrago, G.G., Gonzalez, M.A., Abad, J.L., Claveria, C., Gomez, L., Bernad, A., Martinez-A, C., Riese, H.H.: Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J. 16, 833–841 (2002)CrossRefGoogle Scholar
- 3.Chen, J., Brodsky, S., Li, H., Hampel, D.J., Miyata, T., Weinstein, T., Gafter, U., Norman, J.T., Fine, L.G., Goligorsky, M.S.: Delayed branching of endothelial capillary-like cords in glycated collagen I is mediated by early induction of PAI-1. Am. J. Physiol.-Renal 281, F71–F80 (2001)Google Scholar
- 4.Namy, P., Ohayon, J., Tracqui, P.: Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J. Theor. Biol. 227, 103–120 (2004)CrossRefMathSciNetGoogle Scholar
- 5.Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Giraudo, E., Serini, G., Preziosi, L., Bussolino, F.: Percolation morphogenesis and burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90, 118101 (2003)Google Scholar
- 6.Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22, 1771–1779 (2003)CrossRefGoogle Scholar
- 7.Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor. 44, 271–282 (1996)CrossRefGoogle Scholar
- 8.Manoussaki, D.: A mechanochemical model of angiogenesis and vasculogenesis. ESAIM-Math. Model. Num. 37, 581–599 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
- 9.Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa, A., Miyoshi, F., Naito, Y., Nakayama, Y., Tomita, M.: E-cell 2: Multi-platform e-cell simulation system. Bioinformatics 19, 1727–1729 (2003)CrossRefGoogle Scholar
- 10.Silicon cell project, http://www.siliconcell.net
- 11.Savill, N.J., Hogeweg, P.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184, 229–235 (1997)CrossRefGoogle Scholar
- 12.Marée, A.F.M., Hogeweg, P.: How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum. P. Natl. Acad. Sci. USA 98, 3879–3883 (2001)CrossRefGoogle Scholar
- 13.Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)CrossRefGoogle Scholar
- 14.Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. J. Theor. Biol. 216, 85–100 (2002)CrossRefMathSciNetGoogle Scholar
- 15.Kiskowski, M.A., Alber, M.S., Thomas, G.L., Glazier, J.A., Bronstein, N.B., Pu, J., Newman, S.A.: Interplay between activator-inhibitor coupling and cell-matrix adhesion in a cellular automaton model for chondrogenic patterning. Dev. Biol. 271, 372–387 (2004)CrossRefGoogle Scholar
- 16.Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)CrossRefGoogle Scholar
- 17.Izaguirre, J.A., Chaturvedi, R., Huang, C., Cickovski, T., Coffland, J., Thomas, G., Forgacs, G., Alber, M., Hentschel, G., Newman, S.A., Glazier, J.A.: CompuCell, a multi-model framework for simulation of morphogenesis. Bioinformatics 20, 1129–1137 (2004)CrossRefGoogle Scholar
- 18.Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203, 317–333 (2000)CrossRefGoogle Scholar
- 19.Jiang, Y., Swart, P.J., Saxena, A., Asipauskas, M., Glazier, J.A.: Hysteresis and avalanches in two-dimensional foam rheology simulations. Phys. Rev. E 59, 5819–5832 (1999)CrossRefGoogle Scholar
- 20.Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)CrossRefGoogle Scholar
- 21.LaRue, A.C., Mironov, V.A., Argraves, W.S., Czirók, A., Fleming, P.A., Drake, C.J.: Patterning of embryonic blood vessels. Dev. Dynam. 228, 21–29 (2003)CrossRefGoogle Scholar