Modelling Wildfire Dynamics via Interacting Automata

  • Adam Dunn
  • George Milne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3305)


The modelling of wildland fire spread across a heterogeneous landscape is significant because fire dynamics are sensitive to local spatial characteristics. The development of accurate fire models and simulations is important due to the economical and social losses wildland fire can cause and the resulting need to better understand, predict, and contain fire spread. We present a methodology for encoding the spread of wildland fire in a set of interacting automata. The Circal formalism is used to explicitly describe the transmission of fire as an interaction between discrete cells of landscape. We demonstrate the potential for the methodology to accurately model spatial dynamics by giving results of our implementation of a fire spread model that includes a heterogenous environment.


Modelling wildfire spread cellular automata Circal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rothermel, C.: A mathematical model for predicting fire spread in wildland fuels. Technical report, United States Department of Agriculture, Forest Service, INT-115 (1972)Google Scholar
  2. 2.
    Muzy, A., Marcelli, T., Aiello, A., San-toni, P., Santucci, J., Balbi, J.: An object oriented environment applied to a semi-physical model of firespread across a fuel bed. In: DEVS Workshop (2001)Google Scholar
  3. 3.
    Muzy, A., Wainer, G.: Cell-DEVS quantization techniques in a fire spreading application. In: The 2002 Winter Simulation Conference, pp. 542–549 (2002)Google Scholar
  4. 4.
    Muzy, A., Wainer, G., Innocenti, E., Aiello, A., Santucci, J.F.: Comparing simulation methods for fire spreading across a fuel bed. In: AIS (2002)Google Scholar
  5. 5.
    Clarke, K.C., Brass, J.A., Riggan, P.J.: A cellular automaton model of wildfire propagation and extinction. Photogrammetric Eng. and Remote Sensing 60, 1355–1367 (1994)Google Scholar
  6. 6.
    Viegas, D.X., Ribiero, P.R., Maricato, L.: An empirical model for the spread of a fireline inclined in relation to the slope gradient or to wind direction. In: Fourteenth Conference on Fire and Forest Meteorology, vol. 1, pp. 325–342 (1998)Google Scholar
  7. 7.
    André, J.C.S., Viegas, D.X.: An unifying theory on the propagation of the fire front of surface forest fires. In: Fourteenth Conference on Fire and Forest Meteorology, vol. 1, pp. 259–279 (1998)Google Scholar
  8. 8.
    Linn, R., Reisner, J., Colman, J.J., Winterkamp, J.: Studying wildfire behaviour using FIRETEC. International Journal of Wildland Fire 11, 233–246 (2002)CrossRefGoogle Scholar
  9. 9.
    Linn, R., Winterkamp, J., Edminster, C., Colman, J., Steinzig, M.: Modeling interactions between fire and atmosphere in discrete element fuel beds. Technical report, Los Alamos National Laboratory, Los Alamos (unknown)Google Scholar
  10. 10.
    McCormick, R.J., Brandner, T.A., Allen, T.F.H.: Towards a theory of meso-scale wildfire modeling a complex systems approach using artificial neural networks. Technical report, University of Wisconsin-Madison (unknown)Google Scholar
  11. 11.
    Bossert, J.E., Linn, R.R., Winterkamp, J.L., Dennison, P., Roberts, D.: Coupled atmosphere-fire behaviour model sensitivity to spatial fuels characterization (unknown)Google Scholar
  12. 12.
    Zeigler, B.P., Vahie, S.: DEVS formalism and methodology: Unity of conception/ diversity of application. In: Winter Simulation Conference, pp. 574–579 (1993)Google Scholar
  13. 13.
    Wainer, G.A., Giambisi, N.: Application of the Cell-DEVS paradigm for cell spaces modelling and simulation. Simulation 76, 22–39 (2001)CrossRefGoogle Scholar
  14. 14.
    Milne, G.J.: CIRCAL: A calculus for circuit description integration. VLSI Journal 1 (1983)Google Scholar
  15. 15.
    Milne, G.J., Milner, R.: Concurrent processes and their syntax. ACM 26 (1983)Google Scholar
  16. 16.
    Milne, G.J.: Circal and the representation of communication, concurrency and time. ACM Trans. on Programming Languages and Systems 7, 270–298 (1985)zbMATHCrossRefGoogle Scholar
  17. 17.
    Milne, G.J.: The formal description and verification of hardware timing. IEEE Transactions on Computers 40, 711–826 (1991)CrossRefGoogle Scholar
  18. 18.
    Milne, G.J.: Formal Verification and Specification of Digital Systems. McGraw-Hill International, New York (1994)Google Scholar
  19. 19.
    Cerone, A., Milne, G.J.: A methodology for the formal analysis of asynchronous micropipelines. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 246–262. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Hargrove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H., Despain, D.G.: Simulating fire patterns in heterogeneous landscapes. Ecol. Mod. 135, 243–263 (2000)CrossRefGoogle Scholar
  21. 21.
    Balbi, J.H., Santoni, P.A., Dupuy, J.L.: Dynamic modelling of fire spread across a fuel bed. International Journal of Wildland Fire 9, 275–284 (1999)CrossRefGoogle Scholar
  22. 22.
    Santoni, P.A., Balbi, J.H., Dupuy, J.L.: Dynamic modelling of upslope fire growth. International Journal of Wildland Fire 9, 285–292 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Adam Dunn
    • 1
  • George Milne
    • 1
  1. 1.School of Computer Science & Software EngineeringThe University of Western AustraliaAustralia

Personalised recommendations