Local Information in One-Dimensional Cellular Automata

  • Torbjørn Helvik
  • Kristian Lindgren
  • Mats G. Nordahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3305)


A local information measure for a one-dimensional lattice system is introduced, and applied to describe the dynamics of one-dimensional cellular automata.


Local Information Cellular Automaton Cellular Automaton Shannon Entropy Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolfram, S. (ed.): Theory and Application of Cellular Automata. World Scientific, Singapore (1986)Google Scholar
  2. 2.
    Shannon, C.E.: A mathematical theory of communication. Bell System Tech. J. 27, 379–423, 623–656 (1948)Google Scholar
  3. 3.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev (2) 106, 620–630 (1957)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Wheeler, J.: Information, Physics, Quantum: The Search for Links, in Complexity, Entropy and the Physics of Information. Addison-Wesley, Redwood City (1988)Google Scholar
  5. 5.
    Lloyd, S.: Computational capacity of the universe. Physical Review Letters 88 (2002) 237901Google Scholar
  6. 6.
    Bekenstein, J.: Black holes and entropy. Physical Review D 7, 2333–2346 (1973)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Eriksson, K.E., Lindgren, K.: Structural information in self-organizing systems. Physica Scripta 35, 388–397 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eriksson, K.E., Lindgren, K., Månsson, B.Å.: Structure, Context, Complexity, and Organization. World Scientific, Singapore (1987)Google Scholar
  9. 9.
    Kaneko, K.: Lyapunov analysis and information flow in coupled map lattices. Physica D 23, 436–447 (1986)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Toffoli, T.: Information transport obeying the continuity equation. IBM J. Res. Develop. 32, 29–36 (1988)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Vastano, J.A., Swinney, H.L.: Information transport in spatiotemporal systems. Physical Review Letters 60, 1773–1776 (1988)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Schreiber, T.: Spatio-temporal structure in coupled map lattices: two-point correlations versus mutual information. Journal of Physics. A. 23, L393–L398 (1990)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Schreiber, T.: Measuring information transfer. Physical Review Letters 85, 461–464 (2000)CrossRefGoogle Scholar
  14. 14.
    Lindgren, K., Eriksson, A., Eriksson, K.E.: Flows of information in spatially extended chemical dynamics. To appear in Proceedings of ALife 9 (2004)Google Scholar
  15. 15.
    Eriksson, K.E., Lindgren, K., Nordahl, M.G.: Continuity of information flow in discrete reversible systems. Chalmers preprint (1993)Google Scholar
  16. 16.
    Grassberger, P.: Toward a quantitative theory of self-generated complexity. International Journal of Theoretical Physics 25, 907–938 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hanson, J.E., Crutchfield, J.P.: Computational mechanics of cellular automata: an example. Physica D 103, 169–189 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Grassberger, P.: Chaos and diffusion in deterministic cellular automata. Physica D 10, 52–58 (1984)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Eloranta, K., Nummelina, E.: The kink of cellular automaton Rule 18 performs a random walk. Journal of Statistical Physics 69, 1131–1136 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Khinchin, A.: Mathematical Foundations of Information Theory. Dover Publications Inc., New York (1957)zbMATHGoogle Scholar
  22. 22.
    Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley Series in Telecommunications. John Wiley & Sons Inc., New York (1991)zbMATHCrossRefGoogle Scholar
  23. 23.
    Toffoli, T., Margolus, N.H.: Invertible cellular automata: a review. Physica D 45, 229–253 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Frisch, Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters 56, 1505–1508 (1986)CrossRefGoogle Scholar
  25. 25.
    Vichniac, G.: Simulating physics with cellular automata. Physica D 10, 96–115 (1984)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Takesue, S.: Reversible cellular automata and statistical mechanics. Physical Review Letters 59, 2499–2502 (1987)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Mathematical Systems Theory 3, 320–375 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lindgren, K.: Correlations and random information in cellular automata. Complex Systems 1, 529–543 (1987)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Lindgren, K., Nordahl, M.G.: Complexity measures and cellular automata. Complex Systems 2, 409–440 (1988)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Helvik, T., Lindgren, K., Nordahl, M.: Local information in discrete lattice systems (forthcoming)Google Scholar
  31. 31.
    Richardson, D.: Tesselations with local transformations. Journal of Computer and Systems Sciences 5, 373–388 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Torbjørn Helvik
    • 1
    • 2
  • Kristian Lindgren
    • 2
  • Mats G. Nordahl
    • 3
  1. 1.Department of Mathematical SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.Department of Physical Resource TheoryChalmers University of Technology and Göteborg UniversityGöteborgSweden
  3. 3.Innovative DesignChalmers University of TechnologyGöteborgSweden

Personalised recommendations