Advertisement

Build, Augment and Destroy, Universally

  • Neil Ghani
  • Tarmo Uustalu
  • Varmo Vene
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3302)

Abstract

We give a semantic footing to the fold/build syntax of programming with inductive types, covering shortcut deforestation, based on a universal property. Specifically, we give a semantics for inductive types based on limits of algebra structure forgetting functors and show that it is equivalent to the usual initial algebra semantics. We also give a similar semantic account of the augment generalization of build and of the unfold/destroy syntax of coinductive types.

Keywords

Universal Property Functional Programming Forgetful Functor Inductive Type Initial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenkirch, T.: Logical relations and inductive/coinductive types. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL 1998. LNCS, vol. 1584, pp. 343–354. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bainbridge, E.S., Freyd, P.J., Scedrov, A., Scott, P.J.: Functorial polymorphism. Theoretical Computer Science 70(1), 35–64 (1991); Corrigendum, ibid. 71(3), 431 (1991) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Böhm, C., Berarducci, A.: Automatic synthesis of typed Λ-programs on term algebras. Theoretical Computer Science 39(2–3), 135–154 (1985)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dubuc, E., Street, R.: Dinatural transformations. In: Lane, S.M. (ed.) Reports of the Midwest Category Seminar IV, pp. 126–137. Springer, Heidelberg (1970)CrossRefGoogle Scholar
  5. 5.
    Eppendahl, A.: Parametricity and Mulry’s strong dinaturality. Technical Report 768, Dept.of Computer Science, Queen Mary and Westfield College, London (1999)Google Scholar
  6. 6.
    Eppendahl, A.: Categories and Types for Axiomatic Domain Theory. PhD thesis, Queen Mary, University of London (2003)Google Scholar
  7. 7.
    Fegaras, L.: Using the parametricity proposition for program fusion. Technical report CSE-96-001, Dept.of Computer Science and Engineering, Oregon Graduate Institute, Portland, OR (1996)Google Scholar
  8. 8.
    Freyd, P.J.: Structural polymorphism. Theoretical Computer Science 115(1), 107–129 (1993)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ghani, N., Lüth, C., Marchi, F.D.: Coalgebraic monads. In: Moss, L.S. (ed.) Proc. of 5th Wksh. on Coalgebraic Methods in Computer Science, CMCS 2002. Electronic Notes in Theoretical Computer Science, vol. 65(1). Elsevier, Amsterdam (2002)Google Scholar
  10. 10.
    Gill, A., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In: Conf. Record of 6th ACM SIGPLAN-SIGARCH Int. Conf. on Functional Programming Languages and Computer Architecture, FPCA 1993, pp. 223–232. ACM Press, New York (1993)Google Scholar
  11. 11.
    Gill, A.J.: Cheap Deforestation for Non-strict Functional Languages. PhD thesis, Univ. of Glasgow (1996)Google Scholar
  12. 12.
    Girard, J.-Y., Scedrov, A., Scott, P.J.: Normal forms and cut-free proofs as natural transformations. In: Moschovakis, Y.N. (ed.) Logic from Computer Science, Mathematical Sciences Research Institute Publications, vol. 21, pp. 217–241. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Hagino, T.: A typed lambda calculus with categorical type constructors. In: Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer Science. LNCS, vol. 283, pp. 140–157. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  14. 14.
    Hasegawa, R.: Categorical data types in parametric polymorphism. Mathematical Structures in Computer Science 4(1), 71–109 (1994)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Johann, P.: A generalization of short-cut fusion and its correctness proof. Higher-Order and Symbolic Computation 15(4), 273–300 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Johann, P.: Short-cut fusion is correct. Journal of Functional Programming 13(4), 797–814 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Krstić, S., Launchbury, J., Pavlović, D.: Categories of processes enriched in final coalgebras. In: Honsell, F., Miculan, M. (eds.) ETAPS 2001 and FOSSACS 2001. LNCS, vol. 2030, pp. 303–317. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Launchbury, J., Sheard, T.: Warm fusion: Deriving build-catas from recursive definitions. In: Conf. Record 7th ACM SIGPLAN-SIGARCH Int. Conf. on Functional Programming Languages and Computer Architecture, FPCA 1995, pp. 314–323. ACM Press, New York (1995)Google Scholar
  19. 19.
    Leivant, D.: Reasoning about functional programs and complexity classes associated with type disciplines. In: Proc. of 24th Annual IEEE Symp. on Foundations of Computer Science, FOCS 1983, pp. 460–469. IEEE CS Press, Los Alamitos (1983)Google Scholar
  20. 20.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Heidelberg (1971); (1st edn., 1971)CrossRefMATHGoogle Scholar
  21. 21.
    Malcolm, G.: Data structures and program transformation. Science of Computer Programming 14(2–3), 255–279 (1990)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas, lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 124–144. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  23. 23.
    Mulry, P.S.: Strong monads, algebras and fixed points. In: Fourman, M.P., Johnstone, P.T., Pitts, A.M. (eds.) Applications of Categories in Computer Science. London Math. Society Lecture Note Series, vol. 177, pp. 202–216. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  24. 24.
    Paré, R., Román, L.: Dinatural numbers. Journal of Pure and Applied Algebra 128(1), 33–92 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Pavlovic, D.: Logic of build fusion. Technical Report KES.U.00.9, Kestrel Institute (2000)Google Scholar
  26. 26.
    Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Proc. of Programming Symp. (Colloque sur la programmation). LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)Google Scholar
  27. 27.
    Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason, R.E.A. (ed.) Proc. of 9th IFIP World Computer Congress, Information Processing 1983, pp. 513–523. North-Holland, Amsterdam (1983)Google Scholar
  28. 28.
    Sheard, T., Fegaras, L.: A fold for all seasons. In: Proc. of 6th ACM SIGPLAN/SIGARCH Int. Conf. on Functional Programming Languages and Computer Architecture, FPCA 1993, pp. 233–242. ACM Press, New York (1993)Google Scholar
  29. 29.
    Svenningsson, J.: Shortcut fusion for accumulating parameters & zip-like functions. In: Proc. of 7th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP 2002, SIGPLAN Notices, vol. 37(9), pp. 124–132. ACM Press, New York (2002)Google Scholar
  30. 30.
    Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Conf. Record 7th ACM SIGPLAN/SIGARCH Int. Conf. on Functional Programming Languages and Computer Architecture, FPCA 1995, pp. 306–313. ACM Press, New York (1995)Google Scholar
  31. 31.
    Turbak, F., Wells, J.B.: Cycle therapy: A prescription for fold and unfold on regular trees. In: Proc. of 3rd Int. ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming, PPDP 2001, pp. 137–149. ACM Press, New York (2001)Google Scholar
  32. 32.
    Uustalu, T.: Generalizing substitution. Theoretical Informatics and Applications 37(4), 315–336 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Voigtländer, J.: Concatenate, reverse and map vanish for free. In: Proc. of 7th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP 2002, SIGPLAN Notices, vol. 37(9), pp. 14–25. ACM Press, New York (2002)Google Scholar
  34. 34.
    Wadler, P.: Theorems for free? In: Proc. of 4th Int. Conf. on Funct. Prog. Languages and Computer Arch. FPCA 1989, pp. 347–359. ACM Press, New York (1989)Google Scholar
  35. 35.
    Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theoretical Computer Science 73(2), 231–248 (1990)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wadler, P.: Recursive types for free! Draft manuscript (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Neil Ghani
    • 1
  • Tarmo Uustalu
    • 2
  • Varmo Vene
    • 3
  1. 1.Dept. of Math. and Comp. Sci.University of LeicesterLeicesterUK
  2. 2.Institute of CyberneticsTallinn Univ. of TechnologyTallinnEstonia
  3. 3.Dept. of Computer ScienceUniversity of TartuTartuEstonia

Personalised recommendations