Advertisement

Composition of Accelerations to Verify Infinite Heterogeneous Systems

  • Sébastien Bardin
  • Alain Finkel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3299)

Abstract

Symbolic representations and acceleration algorithms are emerging methods to extend model-checking to infinite state space systems. However until now, there is no general theory of acceleration, and designing acceleration algorithms for new data types is a complex task. On the other hand, protocols rarely manipulate new data types, rather new combinations of well-studied data types. For this reason, in this paper we focus on the automatic construction of symbolic representations and acceleration algorithms from existing ones.

Keywords

reachability set unbounded heterogeneous data composition of symbolic representations and acceleration methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAB00]
    Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric reasoning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. [ABJ98]
    Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-thefly analysis of systems with unbounded, lossy FIFO channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. [ABS01]
    Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: a Tool for Reachability analysis of Complex Systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 368–372. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [BC96]
    Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer, Heidelberg (1996)Google Scholar
  5. [BFL04]
    Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 576–590. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [BFLP03]
    Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast Acceleration of Symbolic Transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [BGWW97]
    Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs. In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. [BH99]
    Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel systems with nonregular sets of configurations. Theoretical Computer Science 221(1-2), 211–250 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. [BHJ03]
    Boigelot, B., Herbreteau, F., Jodogne, S.: Hybrid acceleration using real vector automata. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 193–205. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [BJW01]
    Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 588–603. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. [Boi98]
    Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Université de Liège (1998)Google Scholar
  12. [Bou01]
    Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 24–39. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. [Bry92]
    Bryant, R.E.: Symbolic boolean manipulation with ordered binarydecision diagrams. ACM Computing Surveys 24(3), 293–318 (1992)CrossRefGoogle Scholar
  14. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. 4th ACM Symp. Principles of Programming Languages, Los Angeles, CA, USA, January 1977, pp. 238–253. ACM, New York (1977)Google Scholar
  15. [Dil89]
    Dill, D.L.: Timing assumption and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  16. [FL02]
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. [FPS03]
    Finkel, A., Purushothaman Iyer, S., Sutre, G.: Wellabstracted transition systems: Application to FIFO automata. Information and Computation 181(1), 1–31 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [HPR97]
    Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)CrossRefGoogle Scholar
  19. [LAS]
  20. [Ler03]
    Leroux, J.: The affine hull of a binary automaton is computable in polynomial time. In: Proc. 5th Int. Workshop on Verification of Infinite State Systems (INFINITY 2003), Marseille, France, September 2003. Electronic Notes in Theor. Comp. Sci, Elsevier Science, Amsterdam (2003)Google Scholar
  21. [Tav04]
    Tavernier, B.: Calife: a generic graphical user interface for automota tools. In: Proc. of the 4th Workshop on Language Descriptions, Tools and Applications (LDTA 2004), Barcelona, Spain (April 2004)Google Scholar
  22. [WB00]
    Wolper, P., Boigelot, B.: On the construction of automata from linear arithmetic constraints. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 1–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. [YKTB01]
    Yavuz-Kahveci, T., Tuncer, M., Bultan, T.: A library for composite symbolic representations. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sébastien Bardin
    • 1
  • Alain Finkel
    • 1
  1. 1.LSVCNRS UMR 8643, ENS de CachanCACHAN CedexFrance

Personalised recommendations