QOM – Quick Ontology Mapping

  • Marc Ehrig
  • Steffen Staab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3298)

Abstract

(Semi-)automatic mapping – also called (semi-)automatic alignment – of ontologies is a core task to achieve interoperability when two agents or services use different ontologies. In the existing literature, the focus has so far been on improving the quality of mapping results. We here consider QOM, Quick Ontology Mapping, as a way to trade off between effectiveness (i.e. quality) and efficiency of the mapping generation algorithms. We show that QOM has lower run-time complexity than existing prominent approaches. Then, we show in experiments that this theoretical investigation translates into practical benefits. While QOM gives up some of the possibilities for producing high-quality results in favor of efficiency, our experiments show that this loss of quality is marginal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: On integrating catalogs. In: Proceedings of the tenth international conference on World Wide Web, pp. 603–612 (2001)Google Scholar
  2. 2.
    Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging and mapping. International Journal of Human-Computer Studies 59, 983–1024 (2003)CrossRefGoogle Scholar
  3. 3.
    Doan, A., Domingos, P., Halevy, A.: Learning to match the schemas of data sources: A multistrategy approach. VLDB Journal 50, 279–301 (2003)MATHGoogle Scholar
  4. 4.
    Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R., Tempich, C.: The SWAP data and metadata model for semantics-based peer-to-peer systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Proceedings of the International Conference on Data Mining—ICDM 2003, IEEE Press, Los Alamitos (2003)Google Scholar
  6. 6.
    Ehrig, M., Staab, S.: Quick ontology mapping with QOM. Technical report, University of Karlsruhe, Institute AIFB (2004), http://www.aifb.uni-karlsruhe.de/WBS/meh/mapping/
  7. 7.
    Do, H., Rahm, E.: COMA- a system for flexible combination of schema matching approaches. In: Proceedings of the 28th VLDB Conference, Hong Kong, China (2002) Google Scholar
  8. 8.
    Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: imap: discovering complex semantic matches between database schemas. In: Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pp. 383–394 (2004) Google Scholar
  9. 9.
    Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 76–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In: Doan, A., Halevy, A., Noy, N. (eds.) Proceedings of the Semantic IntegrationWorkshop at ISWC 2003 (2003)Google Scholar
  11. 11.
    Bisson, G.: Why and how to define a similarity measure for object based representation systems. Towards Very Large Knowledge Bases, 236–246 (1995)Google Scholar
  12. 12.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, p. 251. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions, and reversals. Cybernetics and Control Theory (1966) Google Scholar
  14. 14.
    Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall, Boca Raton (1994)MATHGoogle Scholar
  15. 15.
    Boddy, M.: Anytime problem solving using dynamic programming. In: Proceedings of the Ninth National Conference on Artificial Intelligence, Anaheim, California, pp. 738–743. Shaker Verlag (1991)Google Scholar
  16. 16.
    Tempich, C., Volz, R.: Towards a benchmark for semantic web reasoners - an analysis of the DAML ontology library. In: Sure, Y. (ed.) Evaluation of Ontology-based Tools (EON 2003) at Second International SemanticWeb Conference (ISWC 2003) (2003)Google Scholar
  17. 17.
    Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceedings of the second int. workshop onWeb Databases (German Informatics Society) (2002)Google Scholar
  18. 18.
    Rodríguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering (2000)Google Scholar
  19. 19.
    Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontology interdependencies. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, p. 86. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based algorithm for context matching. In: IV International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT 2003), Stanford University, CA, USA (2003)Google Scholar
  21. 21.
    McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets with application to reference matching. In: Knowledge Discovery and Data Mining, pp. 169–178 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marc Ehrig
    • 1
  • Steffen Staab
    • 1
  1. 1.Institute AIFBUniversity of Karlsruhe 

Personalised recommendations