Global Interpretation and Local Analysis to Measure Gears Eccentricity

  • Joaquín Salas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

This paper presents a data-driven approach to profile fitting where global constraints are imposed to local measurements. The local measurements are obtained from partial analysis of the objects under consideration. Prior knowledge of the object under analysis provides global constraints. To illustrate these concepts, it is developed the exercise of measuring a gear’s boundary from its teeth profile. A framework is developed to extract local parameters from frame to frame and to enforce morphologic constraints over the whole sequence. It is shown how a combination of accurate local processing techniques and global knowledge can solve the tradeoff between what can be perceived locally and interpreted globally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marr, D.: Vision. W.H. Freeman, New York (1982)Google Scholar
  2. 2.
    Ullman, S.: High-Level Vision. MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Wilson, B.A.: Dimensioning and Tolerancing Handbook. Genium Publishing (1995)Google Scholar
  4. 4.
    Martin, S.J., Butler, M.A., Land, C.E.: Ferroelectric Optical Image Comparator using PLZT Thin Films. Electronics Letters 24(24), 1486–1487 (1988)CrossRefGoogle Scholar
  5. 5.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar
  6. 6.
    Brown, L.G.: A Survey of Image Registration Techniques. ACM Computing Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
  7. 7.
    Maintz, Viergever: A Survey of Medical Image Registration. Medical Image Analysis 2(1) (1998)Google Scholar
  8. 8.
    Kruggel, F., Tittgemeyer, M., Wollny, G.: Visualising Deformation Fields Computed by Non-Linear Image Registration. Computing and Visualization in Science 5(1), 45–51 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  10. 10.
    Haker, S., Tannenbaum, A., Kikinis, R.: Mass Preserving Mappings and Image Registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, p. 120. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Chirstensen, G.E., Johnson, H.J.: Consistent Image Registration. IEEE Transactions on Medical Imaging 20(7), 568–582 (2001)CrossRefGoogle Scholar
  12. 12.
    Alliney, S., Morandi, C.: Digital Image Registration using Projections. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(2), 222–233 (1986)CrossRefGoogle Scholar
  13. 13.
    Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes in C++: the Art of Scientific Computing. Cambridge University Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joaquín Salas
    • 1
  1. 1.CICATA-IPN 

Personalised recommendations