Homotopic Labeling of Elements in a Tetrahedral Mesh for the Head Modeling

  • Jasmine Burguet
  • Isabelle Bloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

In this paper we propose a method to obtain a tetrahedral model of the human head by labeling elements of a tetrahedral mesh. To work with meshes as regular as possible, we use the notion of Almost Regular Tesselation (ART) providing tetrahedral meshes with good quality elements. The proposed labeling method uses segmented M.R.I. containing main tissues of the head as input. The labeling is done under topological constraints in order to preserve topological arrangement of the head tissues. This process uses a notion of simple tetrahedra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dokladal, P., Bloch, I., Couprie, M., Ruijters, D., Urtasun, R., Garnero, L.: Topologically Controlled Segmentation of 3D Magnetic Resonance Images of the Head by using Morphological Operators. Pattern Recognition 36, 2463–2478 (2003)CrossRefGoogle Scholar
  2. 2.
    Pescatore, J.: Maillages Homotopiques Tétraédriques des Tissus de la Tête pour le Calcul du Problème Direct en Électro/Magneto-Encéphalographie. PhD thesis, École Nationale Supérieure des Télécommunications (2001)Google Scholar
  3. 3.
    George, J.: Computer Implementation of the Finite Element Method. PhD thesis, Dept. of Computer Science Stanford University (1971)Google Scholar
  4. 4.
    George, P., Séveno, E.: The Advancing Front Mesh Method Revisited. Internation Journal in Numerical Methods in Engineering 37, 3605–3619 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Peraire, J., Morgan, K.: Unstructured Mesh Generation Including Directional Refinement for Aerodynamics Flow Simulation. Finite Elements in Analysis and Design 25, 343–355 (1997)MATHCrossRefGoogle Scholar
  6. 6.
    Bowyer, A.: Computing Dirichlet Tesselations. The Computer Journal 24, 162–167 (1981)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pescatore, J., Bloch, I., Baillet, S., Garnero, L.: FEM Tetrahedral Mesh of Head Tissues from MRI under Geometric and Topological Constraints for Applications in EEG and MEG. In: Human Brain Mapping HBM 2001, Brighton, UK, p. 218 (2001)Google Scholar
  8. 8.
    Munck, J.: The Potential Distribution in a Layered Anisotropic Spheroidal Volume Conductor. Journal of applied Physics 64, 464–470 (1988)CrossRefGoogle Scholar
  9. 9.
    Sarvas, J.: Basic Mathematical and Electromagnetic Concepts of the Biomagnetics Inverse Problem. Physics in Medical Biology 32, 11–22 (1987)CrossRefGoogle Scholar
  10. 10.
    Parthasarathy, V., Graichen, C., Hathaway, A.: A Comparison of tetrahedron Quality Measures. Finite Elements in Analysis and Design 15, 255–261 (1993)CrossRefGoogle Scholar
  11. 11.
    Martinez, E., Garnero, L., Bloch, I.: Refined Adaptive Meshes for the Localization of Cortical Activity. Technical Report 2003D001, Ecole Nationale Supérieure des Télécommunications (2003)Google Scholar
  12. 12.
    Kong, T.Y.: On Topology Preservation in 2D and 3d Thinning. Internation Journal of Patterne Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jasmine Burguet
    • 1
  • Isabelle Bloch
    • 1
  1. 1.Département TSI – CNRS UMR 5141 LTCIÉcole Nationale Supérieure des TélécommunicationsParis Cedex 13France

Personalised recommendations