Pattern Recognition via Vasconcelos’ Genetic Algorithm

  • Angel Kuri-Morales
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)


In this paper we describe a heuristic approach to the problem of identifying a pattern embedded within a figure from a predefined set of patterns via the utilization of a genetic algorithm (GA). By applying this GA we are able to recognize a set of simple figures independently of scale, translation and rotation. We discuss the fact that this GA is, purportedly, the best among a set of alternatives; a fact which was previously proven appealing to statistical techniques. We describe the general process, the special type of genetic algorithm utilized, report some results obtained from a test set and we discuss the aforementioned results and we comment on these. We also point out some possible extensions and future directions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuri, A.: Pattern Recognition via a Genetic Algorithm. II Taller Iberoamericano de Reconocimiento de Patrones, La Habana, Cuba, pp. 127–133 (Mayo 1997)Google Scholar
  2. 2.
    Fernández-Ayala, A.: Implementación de una Red Neuronal Multi-Capa para el Reconocimiento de Patrones, Tesis de Maestría, Instituto de Investigaciones Matemáticas Aplicadas y Sistemas (1991)Google Scholar
  3. 3.
    Mühlenbein, Gorges-Schleuter, Krämer: Evolution Algorithms in combinatorial optimization. Parallel Computing 7, 65–85 (1988)MATHCrossRefGoogle Scholar
  4. 4.
    Kuri, A.: Penalty Function Methods for Constrained Optimization with Genetic Algorithms: a Statistical Analysis. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 108–117. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.: Genetic Algorithms in Search. In: Optimization and Machine Learning, Addison-Wesley Publishing Company, Reading (1989)Google Scholar
  6. 6.
    Vose, M.: Generalizing the notion of schema in genetic algorithms. Artificial Intelligence 50, 385–396 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Tsypkin, Ya, Z.: Neural Networks and Fuzzy Systems, p. 179. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  8. 8.
    Kuri, A.: A Methodology for the Statistical Characterization of Genetic Algorithms. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 79–89. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Angel Kuri-Morales
    • 1
  1. 1.Instituto Tecnológico Autónomo de MéxicoTizapán San AngelMéxico

Personalised recommendations