A Model of Desertification Process in a Semi-arid Environment Employing Multi-spectral Images

  • Jorge Lira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3287)

Abstract

A model of desertification in semi-arid environment employing satellite multi-spectral images is presented. The variables proposed to characterize desertification are: texture of terrain, vegetation index for semi-arid terrain, and albedo of terrain. The texture is derived from a divergence operator applied upon the vector field formed by the first three principal components of the image. The vegetation index selected is the TSAVI, suitable for semi-arid environment where vegetation is scarce. The albedo is calculated from the first principal component obtained from the bands of the multi-spectral image. These three variables are input into a clustering algorithm resulting in six desertification grades. These grades are ordered from no-desertification to severe desertification. Details are provided for the computer calculation of the desertification variables, and the parameters employed in the clustering algorithm. A multi-spectral Landsat TM image is selected for this research. A thematic map of desertification is then generated with the support of ancillary data related to the study area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fredrickson, E., Havstad, K.M., Estell, R., Hyder, P.: Perspectives on Desertification: South-Western United States. J. of Arid Env. 39, 191–207 (1998)CrossRefGoogle Scholar
  2. 2.
    Rubio, J.L., Bochet, E.: Desertification Indicators as Diagnosis Criteria for Desertification Risk Assesment in Europe. J. of Arid Env. 39, 111–120 (1998)Google Scholar
  3. 3.
    Puigdefábregas, J., Mendizabal, T.: Perspectives on Desertification: Western Mediterranean. J. of Arid Env. 39, 209–224 (1998)CrossRefGoogle Scholar
  4. 4.
    Barth, H.J.: Desertification in the Eastern Province of Saudi Arabia. J. of Arid Env. 43, 399–410 (1999)CrossRefGoogle Scholar
  5. 5.
    Hill, J., Sommer, S., Mehl, W., Megier, J.: Use of Earth Observation Satellite for Land Degradation Mapping and Monitoring in Mediterranean Ecosystems: Towards a Satellite-Observatory. Environ. Monitor. and Asses. 37, 143–158 (1995)CrossRefGoogle Scholar
  6. 6.
    Grigorev, A.A., Kondratev, K.Y.: Satellite Monitoring of Natural and Anthropogenic Disasters. Earth Observ. and Rem. Sens. 14, 433–448 (1997)Google Scholar
  7. 7.
    Witt, R.G.: GIS and Remote Sensing Applications for Environmental Assesment. Earth Observ. and Rem. Sens. 16, 179–192 (2000)Google Scholar
  8. 8.
    Robinove, C.J., Chavez, P.S., Gehring, D., Holmgren, R.: Arid Land Monitoring Using Landsat Albedo Difference Images. Rem. Sens. of Env. 11, 133–156 (1981)CrossRefGoogle Scholar
  9. 9.
    de Soyza, A.G., Whitford, W.G., Herrick, J.E., Van Zee, J.W., Havstad, K.M.: Early Warning Indicators of Desertification: Examples of Tests in the Chihuahuan Desert. J. of Arid Env. 39, 101–112 (1988)Google Scholar
  10. 10.
    Xu, X.K., Lin, Z.H., Li, J.P., Zeng, Q.C.: Temporal-Spatial Characteristics of Vegetation Cover and Desertification of China Using Remote Sensing Data. Progr. Nat. Sci. 12, 45–49 (2002)Google Scholar
  11. 11.
    Palmer, A.R., van Rooyen, A.F.: Detecting Vegetation Change in the Southern Kalahari Using Landsat TM Data. J. of Arid Env. 39, 143–153 (1998)CrossRefGoogle Scholar
  12. 12.
    Tripathy, G.K., Ghosh, T.K., Shah, S.D.: Monitoring Desertification Process in Kamataka State of India Using Multi-Temporal Remote Sensing and Ancillary Information Using GIS. Inter. J. of Rem. Sens. 17, 2243–2257 (1996)CrossRefGoogle Scholar
  13. 13.
    Seixas, J.: Assesing Heterogeneity From Remote Sensing Images: The Case of Desertification in Southern Portugal. Inter. J. of Rem. Sens. 21, 2645–2663 (2000)CrossRefGoogle Scholar
  14. 14.
    Schlesinger, W.H., Raikes, J.A., Hartley, A.E., Cross, A.F.: On the Spatial Patterns of Soil Nutrients in Desert Ecosystems. Ecology 77, 364–374 (1996)CrossRefGoogle Scholar
  15. 15.
    García, E.: Modificaciones al Sistema de Clasificación Climática de Kopen, Para Adaptarlo a las Condiciones de la República Mexicana. Reporte Técnico, Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  16. 16.
    Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, Boston (1991)Google Scholar
  17. 17.
    Dougherty, E.R.: Random Processes for Image and Signal Processing. SPIE/IEEE Press, Bellingham (1999)MATHGoogle Scholar
  18. 18.
    Galvão, L.S., Vitorello, I., Paradella, W.R.: Spectroradiometric Discrimination of Laterites With Principal Components Analysis and Additive Modelling. Rem. Sens. of Env. 53, 70–75 (1995)CrossRefGoogle Scholar
  19. 19.
    Lira, J., Frulla, L.: An Automated Region Growing Algorithm for Segmentation of Texture Regions in SAR Images. Inter. J. of Rem. Sens. 19, 3595–3606 (1998)CrossRefGoogle Scholar
  20. 20.
    Lira, J.: A Divergence Operator to Segment Urban Texture. In: IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion Over Urban Areas, Rome, November 8-9, pp. 159–163 (2001)Google Scholar
  21. 21.
    Baret, F., Guyot, G.: Potentials and Limits of Vegetation Indices for LAI and APAR Assesment. Rem. Sens. of Env. 39, 161–173 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jorge Lira
    • 1
  1. 1.Instituto de Geofísica-UNAM, Circuito Institutos, Cd. UniversitariaMéxico DFMéxico

Personalised recommendations