Conformal Field Theory and Torsion Elements of the Bloch Group
Abstract
We argue that rational conformally invariant quantum field theories in two dimensions are closely related to torsion elements of the algebraic K-theory group K3(C). If such a field theory has an integrable perturbation with purely elastic scattering matrix, then its partition function has a canonical sum representation. The corresponding asymptotic behaviour of the density of states is given in terms of the solutions of an algebraic equation which can be read off from the scattering matrix. These solutions yield torsion elements of an extension of the Bloch group which seems to be equal to K3(C). The algebraic equations are solved for integrable models given by arbitrary pairs of A-type Cartan matrices. The paper should be readable by mathematicians.
Keywords
Central Charge Irreducible Representation Operator Product Expansion Conformal Dimension Dynkin DiagramPreview
Unable to display preview. Download preview PDF.
References
- E. Ardonne, P. Bouwknegt, and P. Dawson, K-matrices for 2D conformal field theories, Nucl.Phys. B660 (2003), 473–531Google Scholar
- G.E. Andrews, The theory of partitions, in: Encyclopedia of Mathematics and its Applications, Vol. 2, Addison Wesley, 1976Google Scholar
- A. Berkovich, B.M. McCoy, The universal chiral partition function for exclusion statistics, hep-th/9808013Google Scholar
- P. Dorey, Exact S-matrices, hep-th/9810026Google Scholar
- A. Coste, T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys.Lett. B323 (1994), 316–321Google Scholar
- P. Dorey, R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl.Phys. B515 (1998), 575–623CrossRefGoogle Scholar
- E. Frenkel, A. Szenes, Crystal bases, dilogarithm identities and torsion in algebraic K-groups, J. Amer. Math. Soc. 8 (1995), 629–664, hep-th/9304118zbMATHCrossRefGoogle Scholar
- E. Frenkel, A. Szenes, Thermodynamic Bethe Ansatz and Dilogarithm Identities I, Math. Res. Lett. 2 (1995), 677–693, hep-th/9506215zbMATHGoogle Scholar
- H. Gangl, D. Zagier, Classical and Elliptic Polylogarithms and Special Values of L-Series, in: B.B. Gordon et al. eds., The Arithmetic and Geometry of Algebraic Cycles, 2000Google Scholar
- F. Gliozzi, R. Tateo, Thermodynamic Bethe Ansatz and Threefold Triangulations, Int.J.Mod.Phys. A11 (1996), 4051–4064Google Scholar
- F. Gliozzi, R. Tateo, ADE functional dilogarithm identities and integrable models, Phys.Lett. B348 (1995), 84–88Google Scholar
- R. Hirota, Discrete analogue of a generalized Toda equation, J.Phys. Soc. Jpn. 50 (1981) 3785–3791CrossRefGoogle Scholar
- R. Kedem, T.R. Klassen, B.M. McCoy, E. Melzer, Fermionic Quasiparticle Representations for Characters of G1 (1) × G1 (1)/G2 (1), Phys.Lett. B304 (1993), 263–270Google Scholar
- A.N. Kirillov, Identities for the Rogers Dilogarithm Function Connected with Simple Lie Algebras, J. Soviet Mathematics 47 (1989), 2450–2459CrossRefGoogle Scholar
- A.N. Kirillov, N.Yu. Reshetikhin, Representations of Yangians and Multiplicities of Occurrence of the Irreducible Components of the Tensor Product of Representations of Simple Lie Algebras, J. Soviet Mathematics 52 (1990), 3156–3164CrossRefGoogle Scholar
- T. Klassen, E. Melzer, Purely Elastic Scattering Theories And Their Ultraviolet Limits, Nucl.Phys. B338 (1990), 485–528CrossRefGoogle Scholar
- A. Kuniba, T. Nakanishi, Spectra in Conformal Field Theories from the Rogers Dilogarithm, Mod.Phys.Lett. A7 (1992), 3487–3494Google Scholar
- A. Kuniba, T. Nakanishi, J. Suzuki, Characters in Conformal Field Theories from Thermodynamic Bethe Ansatz, Mod.Phys.Lett. A8 (1993), 1649–1660Google Scholar
- M. Lässig, M.J. Martins, Finite-Size Effects in Theories with Factorizable S-Matrices, Nucl.Phys. B354 (1991), 666–688CrossRefGoogle Scholar
- T. Miwa, On Hirota's difference equations, Proc. Japan Acad. A58 (1982) 9–12.Google Scholar
- M.J. Martins, Complex Excitations in the Thermodynamic Bethe Ansatz, Phys.Rev.Lett. 67 (1991), 419–421zbMATHCrossRefGoogle Scholar
- W. Nahm, Conformal Field Theory, Dilogarithms, and Three Dimensional Manifolds, in: Interface between physics and mathematics, Proceedings, Hangzhou 1993, W. Nahm and J.M. Shen eds., World ScientificGoogle Scholar
- W. Nahm, A. Recknagel, and M. Terhoeven, Dilogarithm Identities in Conformal Field Theory, Mod.Phys.Lett. A8 (1993), 1835–1848Google Scholar
- W.D. Neumann, Extended Bloch Group and the Cheeger-Chern-Simons Class, math.GT/0307092Google Scholar
- W.D. Neumann, D. Zagier, Volumes of hyperbolic 3-manifolds, Topology 24 (1985), 307–332zbMATHCrossRefGoogle Scholar
- A. Ocneanu, Paths on Coxeter Diagrams: From Platonic Solids and Singularities to Minimal Models and Subfactors, AMS Fields Institute Monographs no. 13, (1999), B.V. Rajarama Bhat, G, A, Elliott, P.A. Fillmore eds., vol. ‘Lectures on Operator Theory’Google Scholar
- V. Kac, Infinite Dimensional Lie Algebras, Third edition, Cambridge University Press, Cambridge 1990zbMATHGoogle Scholar
- A.A. Suslin, Algebraic K-theory of fields, ICM, Berkeley, I (1986) 222–244Google Scholar
- C.H. Sah, Homology of Classical Lie Groups made Discrete, III, J. Pure Appl. Algebra 56 (1989) 313–318CrossRefGoogle Scholar
- S.O. Warnaar and P.A. Pearce, Exceptional structure of the dilute A 3 model: E8 and E7 Rogers-Ramanujan identities J.Phys. A27 (1994) L891-L898.Google Scholar
- S. Weinzierl, Algebraic Algorithms in Perturbative Calculations, hep-th/0305260, this volumeGoogle Scholar
- D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in: Progr. Math. 89 (1991), Birkhäuser Boston, Boston MA, 391–430Google Scholar
- A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. in Pure Math. 19 (1989), 641Google Scholar
- A.B. Zamolodchikov, On The Thermodynamic Bethe Ansatz Equations For REffectionless Ade Scattering Theories, Phys.Lett. B253 (1991), 391–394.Google Scholar
- D. Zagier, The Dilogarithm Function, this volumeGoogle Scholar