Advertisement

Abstract

In this paper, we review a number of basic results about so-called Hopf algebras. We begin by giving a historical account of the results obtained in the 1930's and 1940's about the topology of Lie groups and compact symmetric spaces. The climax is provided by the structure theorems due to Hopf, Samelson, Leray and Borel. The main part of this paper is a thorough analysis of the relations between Hopf algebras and Lie groups (or algebraic groups). We emphasize especially the category of unipotent (and prounipotent) algebraic groups, in connection with Milnor-Moore's theorem. These methods are a powerful tool to show that some algebras are free polynomial rings. The last part is an introduction to the combinatorial aspects of polylogarithm functions and the corresponding multiple zeta values.

Keywords

Hopf Algebra Algebraic Group Algebra Homomorphism Primitive Element Polynomial Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273–342. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 322–391, Springer, Berlin (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Borel, Topology of Lie groups and characteristic classes, Bull. Am. Math. Soc. 61 (1955), 397–432. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 402–437, Springer, Berlin (1983).zbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Borel, Sur la torsion des groupes de Lie, J. Math. Pures Appl. 35 (1955), 127–139. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 477–489, Springer, Berlin (1983).MathSciNetGoogle Scholar
  4. 4.
    A. Borel, Linear algebraic groups, 2nd edition, Springer, Berlin (1982).Google Scholar
  5. 5.
    A. Borel (and C. Chevalley), The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 14 (1955), 1–9. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 451–459, Springer, Berlin (1983).zbMATHMathSciNetGoogle Scholar
  6. 6.
    N. Bourbaki, Groupes et algèbres de Lie, Chap. 1, and Chap. 2, 3, Hermann, Paris (1971 and 1972).Google Scholar
  7. 7.
    N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Masson, Paris (1981).zbMATHGoogle Scholar
  8. 8.
    N. Bourbaki, Algèbre, Chap. 1, 2 et 3, Hermann, Paris (1970).zbMATHGoogle Scholar
  9. 9.
    N. Bourbaki, Espaces vectoriels topologiques, Chap. 1 à 5, Masson, Paris (1981).zbMATHGoogle Scholar
  10. 10.
    R. Brauer, Sur les invariants intégraux des variétés des groupes de Lie simples clos, C.R. Acad. Sci. Paris 201 (1935), 419–421.zbMATHGoogle Scholar
  11. 11.
    E. Cartan, La géométrie des groupes simples, Annali di Mat. 4 (1927), 209–256. Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 793–840, Gauthier-Villars, Paris (1952).CrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Cartan, Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Ann. Soc. Pol. Math. 8 (1929), 181–225. Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 1081–1126, Gauthier-Villars, Paris (1952).Google Scholar
  13. 13.
    E. Cartan, La théorie des groupes finis et continus et l'Analysis Situs, Mém. Sci. Math., Vol. 42, Gauthier-Villars, Paris (1930). Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 1165–1226, Gauthier-Villars, Paris (1952).Google Scholar
  14. 14.
    P. Cartier, Dualité de Tannaka des groupes et algèbres de Lie, C.R. Acad. Sci. Paris 242 (1956), 322–325.zbMATHMathSciNetGoogle Scholar
  15. 15.
    P. Cartier, Théorie di.érentielle des groupes algébriques, C.R. Acad. Sci. Paris 244 (1957), 540–542.zbMATHMathSciNetGoogle Scholar
  16. 16.
    P. Cartier, Hyperalgèbres et groupes de Lie formels, Institut Henri Poincaré, Paris (1957).Google Scholar
  17. 17.
    P. Cartier, Isogénies des variétés de groupes, Bull. Soc. Math. France 87 (1959), 191–220.zbMATHMathSciNetGoogle Scholar
  18. 18.
    P. Cartier, Groupes algébriques et groupes formels, in “Colloque sur la théorie des groupes algébriques” (Bruxelles, 1962), pp. 87–111, Gauthier-Villars, Paris (1962).Google Scholar
  19. 19.
    P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9 (1972), 253–265.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    P. Cartier, La théorie classique et moderne des fonctions symétriques, Astérisque 105–106 (1983), 1–23.MathSciNetGoogle Scholar
  21. 21.
    P. Cartier, Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Astérisque 161–162 (1988), 31–52.MathSciNetGoogle Scholar
  22. 22.
    P. Cartier, Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Astérisque 282 (2002), 137–173.MathSciNetGoogle Scholar
  23. 23.
    P. Cartier and V. Féray, Nonlinear transformations in Lagrangians and Connes-Kreimer Hopf algebra, in preparation.Google Scholar
  24. 24.
    C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton (1946).zbMATHGoogle Scholar
  25. 25.
    C. Chevalley, Théorie des groupes de Lie, tome II: Groupes algébriques, Hermann, Paris (1951).Google Scholar
  26. 26.
    A. Connes and M. Marcolli, Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory, in this volume, pages 617- 714.Google Scholar
  27. 27.
    A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199–246.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, Moscow Math. J. 4 (2004), 67–109.zbMATHMathSciNetGoogle Scholar
  29. 29.
    P. Deligne, Le groupe fondamental de la droite projective moins trios points, in “Galois groups over Q (edited by Y. Ihara, K. Ribet and J.-P. Serre), pp. 79–297, Springer, Berlin (1989).Google Scholar
  30. 30.
    P. Deligne, Catégories tannakiennes, in “The Grothendieck Festschrift” (edited by P. Cartier and al.), vol. II, pp. 111–195, Birkhäuser, Boston (1990).Google Scholar
  31. 31.
    M. Demazure and A. Grothendieck, Schémas en groupes, 3 vol., Springer, Berlin (1970).Google Scholar
  32. 32.
    M. Demazure and P. Gabriel, Introduction to algebraic geometry and algebraic groups, North Holland, Amsterdam (1980).zbMATHGoogle Scholar
  33. 33.
    G. de Rham, Sur l'Analysis Situs des variétés à n dimensions, J. Math. Pures Appl. 10 (1931), 115–200.Google Scholar
  34. 34.
    J. Dieudonné, Introduction to the theory of formal groups, Marcel Dekker, New York (1973).zbMATHGoogle Scholar
  35. 35.
    S. Doplicher and J.E. Roberts, Endomorphisms of C-algebras, cross products and duality for compact groups, Ann. of Math. 130 (1989), 75–119.CrossRefMathSciNetGoogle Scholar
  36. 36.
    S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), 157–218.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Ch. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934), 396–443. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 6–53, Amiens (1984).CrossRefMathSciNetGoogle Scholar
  38. 38.
    Ch. Ehresmann, Sur la topologie de certaines variétés algébriques réelles, J. Math. Pures Appl. 16 (1937), 69–100. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 55–86, Amiens (1984).zbMATHGoogle Scholar
  39. 39.
    Ch. Ehresmann, Sur la variété des génératrices planes d'une quadrique réelle et sur la topologie du groupe orthogonal à n variables, C.R. Acad. Sci. Paris 208 (1939), 321–323. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 304–306, Amiens (1984).zbMATHGoogle Scholar
  40. 40.
    Ch. Ehresmann, Sur la topologie des groupes simples clos, C.R. Acad. Sci. Paris 208 (1939), 1263–1265. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 307–309, Amiens (1984).zbMATHGoogle Scholar
  41. 41.
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), 218–348.zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    F. Goichot, Un théorème de Milnor-Moore pour les algèbres de Leibniz, in “Dialgebras and related operads”, pp. 111–133, Springer, Berlin (2001).Google Scholar
  43. 43.
    P.P. Grivel, Une histoire du théorème de Poincaré-Birkho.-Witt, Expo. Math. 22 (2004), 145–184.zbMATHMathSciNetGoogle Scholar
  44. 44.
    Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math. 51 (1950), 299–330. Reprinted in Collected Papers, vol. I, pp. 259–290, Springer, Berlin (1984).CrossRefMathSciNetGoogle Scholar
  45. 45.
    W.V.D. Hodge, The theory and applications of harmonic integrals (2nd edition), Cambridge University Press, Cambridge (1952).zbMATHGoogle Scholar
  46. 46.
    M. Hoffman, Quasi-shuffe products, J. Alg. Combinat. 11 (2000), 46–68.Google Scholar
  47. 47.
    H. Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen, Ann. of Math. 42 (1941), 22–52. Reprinted in Selecta Heinz Hopf, pp. 119–151, Springer, Berlin (1964).CrossRefMathSciNetGoogle Scholar
  48. 48.
    H. Hopf, Über den Rang geschlossener Liescher Gruppen, Comm. Math. Helv. 13 (1940–1), 119–143. Reprinted in Selecta Heinz Hopf, pp. 152–174, Springer, Berlin (1964).CrossRefGoogle Scholar
  49. 49.
    H. Hopf and H. Samelson, Ein Satz Über die Wirkungsräume geschlossener Liescher Gruppen, Comm. Math. Helv. 13 (1940–1), 240–251.CrossRefMathSciNetGoogle Scholar
  50. 50.
    D. Krob, B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions, II: transformations of alphabets, J. Algebra Comput. 7 (1997), 181–264.zbMATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    J. Leray, Sur l'homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux, in “Colloque de Topologie Algébrique”, Bruxelles (1950), pp. 101–115. Reprinted in Œuvres scientifiques, vol. I, pp. 447–461, Springer, Berlin (1998).Google Scholar
  52. 52.
    J. Leray, L'anneau spectral et l'anneau filtré 'homologie d'un espace localement compact et d'une application continue, J. Math. Pures Appl. 29 (1950), 1–139. Reprinted in Œuvres scientifiques, vol. I, pp. 261–401, Springer, Berlin (1998).zbMATHMathSciNetGoogle Scholar
  53. 53.
    J.-L. Loday, On the algebra of quasi-shuffes, to appear.Google Scholar
  54. 54.
    J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293–309.zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    L. Loomis, An introduction to abstract harmonic analysis, van Nostrand Co, Princeton (1953).zbMATHGoogle Scholar
  56. 56.
    M. Lothaire, Algebraic combinatorics on words, Cambridge Univ. Press, Cambridge (2002).zbMATHGoogle Scholar
  57. 57.
    I.G. MacDonald, Symmetric functions and Hall polynomials (2nd edition), Oxford Univ. Press, New York (1995).zbMATHGoogle Scholar
  58. 58.
    C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967–982.zbMATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    J.W. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211–264.CrossRefMathSciNetGoogle Scholar
  60. 60.
    F. Patras, L'algèbre des descentes d'une bigèbre graduée, J. Algebra 170 (1994), 547–566.zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    H. Poincaré, Analysis Situs, Journ. Ecole Polyt. 1 (1895), 1–121. Reprinted in Œuvres, vol. VI, pp. 193–288, Gauthier-Villars, Paris (1953).Google Scholar
  62. 62.
    H. Poincaré, Sur les groupes continus, Camb. Phil. Trans. 18 (1899), 220–255. Reprinted in Œuvres, vol. III, pp. 173–212, Gauthier-Villars, Paris (1965).Google Scholar
  63. 63.
    L.S. Pontrjagin, Homologies in compact Lie groups (in Russian), Math. Sbornik 6 (1939), 389–422.MathSciNetGoogle Scholar
  64. 64.
    L.S. Pontrjagin, Über die topologische Struktur der Lie'schen Gruppen, Comm. Math. Helv. 13 (1940–1), 227–238.CrossRefMathSciNetGoogle Scholar
  65. 65.
    D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969), 205–295.CrossRefMathSciNetGoogle Scholar
  66. 66.
    C. Reutenauer, Free Lie algebras, Oxford Univ. Press, New York (1993).zbMATHGoogle Scholar
  67. 67.
    M. Ronco, A Milnor-Moore theorem for dendriform Hopf algebras, C.R. Acad. Sci. Paris (série I) 332 (2000), 109–114.MathSciNetGoogle Scholar
  68. 68.
    M. Ronco, Eulerian idempotents and Milnor-Moore theorem for certain non-commutative Hopf algebras, J. Algebra 254 (2002), 152–172.zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    N. Saavedra, Catégories tannakiennes, Springer, Berlin (1972).zbMATHGoogle Scholar
  70. 70.
    H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math. 42 (1941), 1091–1137.CrossRefMathSciNetGoogle Scholar
  71. 71.
    H. Samelson, Topology of Lie groups, Bull. Am. Math. Soc. 58 (1952), 2–37.zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    J.-P. Serre, Gèbres, Enseignement Math. 39 (1993), 33–85. Reprinted in Œuvres, Collected Papers, vol. IV, pp. 272–324, Springer, Berlin (2000).zbMATHGoogle Scholar
  73. 73.
    H. Weyl, Theorie der Darstellung kontinuierlichen halb-einfacher Gruppen durch lineare Transformationen, I, II, III, Math. Zeit. 23 (1925), 271–309; 24 (1926), 328–376 and 377–395. Reprinted in Gesammelte Abhandlungen, Band II, pp. 543–647, Springer, Berlin (1968).CrossRefMathSciNetGoogle Scholar
  74. 74.
    H. Weyl, The classical groups (2nd edition), Princeton University Press, Princeton (1946).zbMATHGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Pierre Cartier
    • 1
  1. 1.Institut Mathématique de Jussieu/CNRSParis

Personalised recommendations