A Primer of Hopf Algebras
Abstract
In this paper, we review a number of basic results about so-called Hopf algebras. We begin by giving a historical account of the results obtained in the 1930's and 1940's about the topology of Lie groups and compact symmetric spaces. The climax is provided by the structure theorems due to Hopf, Samelson, Leray and Borel. The main part of this paper is a thorough analysis of the relations between Hopf algebras and Lie groups (or algebraic groups). We emphasize especially the category of unipotent (and prounipotent) algebraic groups, in connection with Milnor-Moore's theorem. These methods are a powerful tool to show that some algebras are free polynomial rings. The last part is an introduction to the combinatorial aspects of polylogarithm functions and the corresponding multiple zeta values.
Keywords
Hopf Algebra Algebraic Group Algebra Homomorphism Primitive Element Polynomial AlgebraPreview
Unable to display preview. Download preview PDF.
References
- 1.A. Borel, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273–342. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 322–391, Springer, Berlin (1983).zbMATHCrossRefMathSciNetGoogle Scholar
- 2.A. Borel, Topology of Lie groups and characteristic classes, Bull. Am. Math. Soc. 61 (1955), 397–432. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 402–437, Springer, Berlin (1983).zbMATHMathSciNetGoogle Scholar
- 3.A. Borel, Sur la torsion des groupes de Lie, J. Math. Pures Appl. 35 (1955), 127–139. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 477–489, Springer, Berlin (1983).MathSciNetGoogle Scholar
- 4.A. Borel, Linear algebraic groups, 2nd edition, Springer, Berlin (1982).Google Scholar
- 5.A. Borel (and C. Chevalley), The Betti numbers of the exceptional groups, Mem. Amer. Math. Soc. 14 (1955), 1–9. Reprinted in Œuvres, Collected Papers, vol. 1, pp. 451–459, Springer, Berlin (1983).zbMATHMathSciNetGoogle Scholar
- 6.N. Bourbaki, Groupes et algèbres de Lie, Chap. 1, and Chap. 2, 3, Hermann, Paris (1971 and 1972).Google Scholar
- 7.N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Masson, Paris (1981).zbMATHGoogle Scholar
- 8.N. Bourbaki, Algèbre, Chap. 1, 2 et 3, Hermann, Paris (1970).zbMATHGoogle Scholar
- 9.N. Bourbaki, Espaces vectoriels topologiques, Chap. 1 à 5, Masson, Paris (1981).zbMATHGoogle Scholar
- 10.R. Brauer, Sur les invariants intégraux des variétés des groupes de Lie simples clos, C.R. Acad. Sci. Paris 201 (1935), 419–421.zbMATHGoogle Scholar
- 11.E. Cartan, La géométrie des groupes simples, Annali di Mat. 4 (1927), 209–256. Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 793–840, Gauthier-Villars, Paris (1952).CrossRefMathSciNetGoogle Scholar
- 12.E. Cartan, Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Ann. Soc. Pol. Math. 8 (1929), 181–225. Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 1081–1126, Gauthier-Villars, Paris (1952).Google Scholar
- 13.E. Cartan, La théorie des groupes finis et continus et l'Analysis Situs, Mém. Sci. Math., Vol. 42, Gauthier-Villars, Paris (1930). Reprinted in Œuvres Complètes, Part I, vol. 2, pp. 1165–1226, Gauthier-Villars, Paris (1952).Google Scholar
- 14.P. Cartier, Dualité de Tannaka des groupes et algèbres de Lie, C.R. Acad. Sci. Paris 242 (1956), 322–325.zbMATHMathSciNetGoogle Scholar
- 15.P. Cartier, Théorie di.érentielle des groupes algébriques, C.R. Acad. Sci. Paris 244 (1957), 540–542.zbMATHMathSciNetGoogle Scholar
- 16.P. Cartier, Hyperalgèbres et groupes de Lie formels, Institut Henri Poincaré, Paris (1957).Google Scholar
- 17.P. Cartier, Isogénies des variétés de groupes, Bull. Soc. Math. France 87 (1959), 191–220.zbMATHMathSciNetGoogle Scholar
- 18.P. Cartier, Groupes algébriques et groupes formels, in “Colloque sur la théorie des groupes algébriques” (Bruxelles, 1962), pp. 87–111, Gauthier-Villars, Paris (1962).Google Scholar
- 19.P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9 (1972), 253–265.zbMATHCrossRefMathSciNetGoogle Scholar
- 20.P. Cartier, La théorie classique et moderne des fonctions symétriques, Astérisque 105–106 (1983), 1–23.MathSciNetGoogle Scholar
- 21.P. Cartier, Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Astérisque 161–162 (1988), 31–52.MathSciNetGoogle Scholar
- 22.P. Cartier, Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Astérisque 282 (2002), 137–173.MathSciNetGoogle Scholar
- 23.P. Cartier and V. Féray, Nonlinear transformations in Lagrangians and Connes-Kreimer Hopf algebra, in preparation.Google Scholar
- 24.C. Chevalley, Theory of Lie groups, Princeton Univ. Press, Princeton (1946).zbMATHGoogle Scholar
- 25.C. Chevalley, Théorie des groupes de Lie, tome II: Groupes algébriques, Hermann, Paris (1951).Google Scholar
- 26.A. Connes and M. Marcolli, Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory, in this volume, pages 617- 714.Google Scholar
- 27.A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199–246.zbMATHCrossRefMathSciNetGoogle Scholar
- 28.A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, Moscow Math. J. 4 (2004), 67–109.zbMATHMathSciNetGoogle Scholar
- 29.P. Deligne, Le groupe fondamental de la droite projective moins trios points, in “Galois groups over Q” (edited by Y. Ihara, K. Ribet and J.-P. Serre), pp. 79–297, Springer, Berlin (1989).Google Scholar
- 30.P. Deligne, Catégories tannakiennes, in “The Grothendieck Festschrift” (edited by P. Cartier and al.), vol. II, pp. 111–195, Birkhäuser, Boston (1990).Google Scholar
- 31.M. Demazure and A. Grothendieck, Schémas en groupes, 3 vol., Springer, Berlin (1970).Google Scholar
- 32.M. Demazure and P. Gabriel, Introduction to algebraic geometry and algebraic groups, North Holland, Amsterdam (1980).zbMATHGoogle Scholar
- 33.G. de Rham, Sur l'Analysis Situs des variétés à n dimensions, J. Math. Pures Appl. 10 (1931), 115–200.Google Scholar
- 34.J. Dieudonné, Introduction to the theory of formal groups, Marcel Dekker, New York (1973).zbMATHGoogle Scholar
- 35.S. Doplicher and J.E. Roberts, Endomorphisms of C-algebras, cross products and duality for compact groups, Ann. of Math. 130 (1989), 75–119.CrossRefMathSciNetGoogle Scholar
- 36.S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), 157–218.zbMATHCrossRefMathSciNetGoogle Scholar
- 37.Ch. Ehresmann, Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934), 396–443. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 6–53, Amiens (1984).CrossRefMathSciNetGoogle Scholar
- 38.Ch. Ehresmann, Sur la topologie de certaines variétés algébriques réelles, J. Math. Pures Appl. 16 (1937), 69–100. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 55–86, Amiens (1984).zbMATHGoogle Scholar
- 39.Ch. Ehresmann, Sur la variété des génératrices planes d'une quadrique réelle et sur la topologie du groupe orthogonal à n variables, C.R. Acad. Sci. Paris 208 (1939), 321–323. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 304–306, Amiens (1984).zbMATHGoogle Scholar
- 40.Ch. Ehresmann, Sur la topologie des groupes simples clos, C.R. Acad. Sci. Paris 208 (1939), 1263–1265. Reprinted in Charles Ehresmann: œuvres complètes et commentées, Vol. I, pp. 307–309, Amiens (1984).zbMATHGoogle Scholar
- 41.I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), 218–348.zbMATHCrossRefMathSciNetGoogle Scholar
- 42.F. Goichot, Un théorème de Milnor-Moore pour les algèbres de Leibniz, in “Dialgebras and related operads”, pp. 111–133, Springer, Berlin (2001).Google Scholar
- 43.P.P. Grivel, Une histoire du théorème de Poincaré-Birkho.-Witt, Expo. Math. 22 (2004), 145–184.zbMATHMathSciNetGoogle Scholar
- 44.Harish-Chandra, Lie algebras and the Tannaka duality theorem, Ann. of Math. 51 (1950), 299–330. Reprinted in Collected Papers, vol. I, pp. 259–290, Springer, Berlin (1984).CrossRefMathSciNetGoogle Scholar
- 45.W.V.D. Hodge, The theory and applications of harmonic integrals (2nd edition), Cambridge University Press, Cambridge (1952).zbMATHGoogle Scholar
- 46.M. Hoffman, Quasi-shuffe products, J. Alg. Combinat. 11 (2000), 46–68.Google Scholar
- 47.H. Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen, Ann. of Math. 42 (1941), 22–52. Reprinted in Selecta Heinz Hopf, pp. 119–151, Springer, Berlin (1964).CrossRefMathSciNetGoogle Scholar
- 48.H. Hopf, Über den Rang geschlossener Liescher Gruppen, Comm. Math. Helv. 13 (1940–1), 119–143. Reprinted in Selecta Heinz Hopf, pp. 152–174, Springer, Berlin (1964).CrossRefGoogle Scholar
- 49.H. Hopf and H. Samelson, Ein Satz Über die Wirkungsräume geschlossener Liescher Gruppen, Comm. Math. Helv. 13 (1940–1), 240–251.CrossRefMathSciNetGoogle Scholar
- 50.D. Krob, B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions, II: transformations of alphabets, J. Algebra Comput. 7 (1997), 181–264.zbMATHCrossRefMathSciNetGoogle Scholar
- 51.J. Leray, Sur l'homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux, in “Colloque de Topologie Algébrique”, Bruxelles (1950), pp. 101–115. Reprinted in Œuvres scientifiques, vol. I, pp. 447–461, Springer, Berlin (1998).Google Scholar
- 52.J. Leray, L'anneau spectral et l'anneau filtré 'homologie d'un espace localement compact et d'une application continue, J. Math. Pures Appl. 29 (1950), 1–139. Reprinted in Œuvres scientifiques, vol. I, pp. 261–401, Springer, Berlin (1998).zbMATHMathSciNetGoogle Scholar
- 53.J.-L. Loday, On the algebra of quasi-shuffes, to appear.Google Scholar
- 54.J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293–309.zbMATHCrossRefMathSciNetGoogle Scholar
- 55.L. Loomis, An introduction to abstract harmonic analysis, van Nostrand Co, Princeton (1953).zbMATHGoogle Scholar
- 56.M. Lothaire, Algebraic combinatorics on words, Cambridge Univ. Press, Cambridge (2002).zbMATHGoogle Scholar
- 57.I.G. MacDonald, Symmetric functions and Hall polynomials (2nd edition), Oxford Univ. Press, New York (1995).zbMATHGoogle Scholar
- 58.C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967–982.zbMATHCrossRefMathSciNetGoogle Scholar
- 59.J.W. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211–264.CrossRefMathSciNetGoogle Scholar
- 60.F. Patras, L'algèbre des descentes d'une bigèbre graduée, J. Algebra 170 (1994), 547–566.zbMATHCrossRefMathSciNetGoogle Scholar
- 61.H. Poincaré, Analysis Situs, Journ. Ecole Polyt. 1 (1895), 1–121. Reprinted in Œuvres, vol. VI, pp. 193–288, Gauthier-Villars, Paris (1953).Google Scholar
- 62.H. Poincaré, Sur les groupes continus, Camb. Phil. Trans. 18 (1899), 220–255. Reprinted in Œuvres, vol. III, pp. 173–212, Gauthier-Villars, Paris (1965).Google Scholar
- 63.L.S. Pontrjagin, Homologies in compact Lie groups (in Russian), Math. Sbornik 6 (1939), 389–422.MathSciNetGoogle Scholar
- 64.L.S. Pontrjagin, Über die topologische Struktur der Lie'schen Gruppen, Comm. Math. Helv. 13 (1940–1), 227–238.CrossRefMathSciNetGoogle Scholar
- 65.D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969), 205–295.CrossRefMathSciNetGoogle Scholar
- 66.C. Reutenauer, Free Lie algebras, Oxford Univ. Press, New York (1993).zbMATHGoogle Scholar
- 67.M. Ronco, A Milnor-Moore theorem for dendriform Hopf algebras, C.R. Acad. Sci. Paris (série I) 332 (2000), 109–114.MathSciNetGoogle Scholar
- 68.M. Ronco, Eulerian idempotents and Milnor-Moore theorem for certain non-commutative Hopf algebras, J. Algebra 254 (2002), 152–172.zbMATHCrossRefMathSciNetGoogle Scholar
- 69.N. Saavedra, Catégories tannakiennes, Springer, Berlin (1972).zbMATHGoogle Scholar
- 70.H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math. 42 (1941), 1091–1137.CrossRefMathSciNetGoogle Scholar
- 71.H. Samelson, Topology of Lie groups, Bull. Am. Math. Soc. 58 (1952), 2–37.zbMATHCrossRefMathSciNetGoogle Scholar
- 72.J.-P. Serre, Gèbres, Enseignement Math. 39 (1993), 33–85. Reprinted in Œuvres, Collected Papers, vol. IV, pp. 272–324, Springer, Berlin (2000).zbMATHGoogle Scholar
- 73.H. Weyl, Theorie der Darstellung kontinuierlichen halb-einfacher Gruppen durch lineare Transformationen, I, II, III, Math. Zeit. 23 (1925), 271–309; 24 (1926), 328–376 and 377–395. Reprinted in Gesammelte Abhandlungen, Band II, pp. 543–647, Springer, Berlin (1968).CrossRefMathSciNetGoogle Scholar
- 74.H. Weyl, The classical groups (2nd edition), Princeton University Press, Princeton (1946).zbMATHGoogle Scholar